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Abstract
In this paper, we stochastically analyze the continuous time surplus process in a risk model which involves

a continuous type investment. It is assumed that the investment of the surplus to other business is continuously
made at a constant rate, while the surplus process stays over a given sufficient level. We obtain the stationary
distribution of the surplus level and/or its moment generating function by forming martingales from the surplus
process and applying the optional sampling theorem to the martingales and/or by establishing and solving an
integro-differential equation for the distribution function of the surplus level.
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1. Introduction

We consider a continuous time surplus process in a risk model which involves a continuous type
investment. The surplus, with initial level of u0 > 0, linearly increases at a constant rate c > 0 due to
the incoming premium. Meanwhile, claims arrive according to a Poisson process of rate λ > 0 and
decrease the level of the surplus jump-wise by random amounts which are independent and identically
distributed with distribution function G of mean µ > 0. If the surplus process reaches a sufficient
level V > u0, the investment of the surplus to other business is continuously made at a constant rate
a (0 < a < c) until the surplus process goes below V . The next investment starts if the surplus process
goes over V again.

It is usually assumed that c is larger than λµ, the expected total amount of claims per unit time,
however, c − a is assumed to be less than λµ, in this paper, to keep the surplus process from being
infinitely large. To analyze stochastically the level of the surplus in an infinite horizon, we also assume
that the surplus process continues to move even though the level of the surplus becomes negative. In
the classical risk model, we stop the surplus process and say that a ruin occurs if the level of the
surplus goes below 0.

In practice, an insurance company does not allow the surplus of a policy to get infinitely large,
since the large stock of the surplus increases the opportunity cost. The insurance company hardly
stops managing or operating the policy even though the surplus of the policy is exhausted. Hence, our
assumptions are very practical. The concept of the investment of the surplus was introduced by Jeong
et al. (2009) and Jeong and Lee (2010). They studied some optimal policies related to managing the
surplus in the risk model.
1 Corresponding author: Department of Statistics, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu,

Seoul 04310, Korea. E-mail: eylee@sookmyung.ac.kr

Published 30 September 2016 / journal homepage: http://csam.or.kr
c⃝ 2016 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



424 Yang Hyeon Cho, Seung Kyoung Choi, Eui Yong Lee

The classical risk model has been studied by many authors by assuming that a ruin occurs if the
surplus becomes negative. They have studied the ruin probability of the surplus and some interesting
characteristics, such as the time of ruin, the surplus before ruin and the deficit at ruin. The core
result on the ruin probability is well summarized in Klugman et al. (2004). The first passage time
of the surplus to a certain level was firstly introduced by Gerber (1990), thereafter, Gerber and Shiu
(1997) obtained the joint distribution of the time of ruin, the surplus before ruin and the deficit at
ruin. Dickson and Willmot (2005) calculated the density of the time of ruin by inverting its Laplace
transform.

Dufresne and Gerber (1991) generalized the classical risk model by assuming that the surplus is
perturbed by diffusion process between the time epochs of occurrence of claim and studied the ruin
probability of the surplus. Won et al. (2013) generalized the risk model of Dufresne and Gerber
(1991) by assuming that there are two types of claim, where one occurs more frequently but the size is
smaller than the other, and obtained the ruin probability of the surplus. Song et al. (2012) generalized
the classical risk model by assuming that the premium rate depends on the current level of the surplus
and obtained the joint distribution of the time of ruin, the surplus before ruin and the deficit at ruin.

However, most works, in the above, have been concentrated on the ruin probability of the surplus
and its related characteristics, until Cho et al. (2013) analyze some transient and stationary behaviors
of the surplus process in the risk model with investments. Thereafter, Kim and Lee (2015) adopted a
level crossing approach to obtain the stationary distribution of the surplus process in the risk model
with dividends and reinvestments. The concepts of dividend and investment keep the surplus process
from being infinitely large, and hence, enable us to find the stationary behavior of the surplus process.
However, in the previous models including Jeong et al. (2009) and Jeong and Lee (2010), either the
investment or the dividend was made immediately, jump-wise and by fixed amounts.

In this paper, by assuming that the investment of the surplus to other business is continuously
made at a constant rate while the surplus process stays over a sufficient level V , we study the stationary
distribution of the surplus process. In Section 2.1, we study the stationary distribution of the surplus
level while the surplus process being over V , by forming martingales from the surplus process and
applying the optional sampling theorem to the martingales. In Section 2.2, we obtain the moment
generating function of the stationary distribution of the surplus level while the surplus process being
under V , by establishing an integro-differential equation for the distribution function of the surplus
level and solving the equation. In Section 2.3, we, finally, show how to combine the results in Sections
2.1 and 2.2 to obtain the stationary distribution of the whole surplus process.

The surplus process in our risk model with a continuous type investment is illustrated in Figure 1,
where U(t) is the level of the surplus at time t ≥ 0, × denotes the time epoch where the claim occurs,
and Y is the random variable representing the amount of a claim.

2. Stationary distribution of the surplus process

Let F(x, t) be the distribution function of U(t), the surplus at time t ≥ 0, that is,

F(x, t) = P{U(t) ≤ x}, for −∞ < x < ∞.

Let F(x) be the stationary distribution function of U(t), that is,

F(x) = lim
t→∞

F(x, t), for −∞ < x < ∞.

In this section, we obtain F(x). To do that, we, first, decompose {U(t), t ≥ 0} into two processes
{U1(t), t ≥ 0} and {U2(t), t ≥ 0}. U1(t) is formed by separating the periods where U(t) ≥ V from
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Figure 1: A sample path of U(t).

Figure 2: A sample path of U1(t).

Figure 3: A sample path of U2(t).

the original process and connecting them together. U2(t) is similarly formed by separating the periods
where U(t) ≤ V from the original process and connecting them together. U1(t) and U2(t) are illustrated
in Figures 2 and 3, respectively. In the following subsections, we study the stationary distributions of
U1(t) and U2(t) and, finally, the stationary distribution F(x) of U(t).

2.1. Stationary distribution of U1(t)
Note that the time points where U1(t) = V form imbedded regeneration points of {U1(t), t ≥ 0}. Let
T denote the length of a cycle between two successive regeneration points, then it can be written as

T = inf{t ≥ 0 : U1(t) < [V,∞)}

and T is a stopping time with respect to U1(t). To obtain E(T ), we consider the following process in
a cycle:

M(t) = U1(t) − E[U1(t)]
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It can be shown that M(t) is a martingale in a cycle with E[M(t)] = 0. See Appendix. Applying
the optional sampling theorem (Karlin and Taylor, 1975, pp. 257–262) to M(t) with T , we can have
the following proposition:

Proposition 1.

E(T ) =
E

(
Y2

)
2µ[λµ − (c − a)]

.

Proof: We can show that in a cycle,

E[U1(t)] = V + (c − a)t − λµt

with U1(0) = V . Since T is the first time that U1(t) goes below V , the amount of drop below V , Ye

say, will follow the equilibrium distribution of G, which is

Ge(y) =
1
µ

∫ y

0
[1 −G(x)] dx.

Refer Klugman et al. (2004, p.240). Applying the optional sampling theorem to M(t) with T gives

0 = E[M(T )] = E[U1(T ) − {V + (c − a)T − λµT }].

Since E[U1(T )] = V − E(Ye) with E(Ye) = E(Y2)/2µ, the result follows. �

Let F1(x), for x ≥ V , be the stationary distribution of U1(t). Since U1(t) is a regenerative process
with cycles of length T , it is possible to obtain F1(t), if we know the probability that U1(t) reaches
x ≥ V before it goes below V and the expected duration that U1(t) stays over x in a cycle. To do that,
we consider the following process in a cycle:

W(t) =
erU1(t)

E
[
erV(t)] , for −∞ < r < ∞,

where V(t) = (c− a)t −∑N(t)
i=1 Yi and {N(t), t ≥ 0} is the arrival Poisson process of claims of rate λ > 0.

It can be shown that

E
[
erV(t)

]
= exp [rt(c − a) + λt{MY (−r) − 1}] ,

where MY (r) =
∫ ∞

0 erydG(y) is the moment generating function of Y . Hence,

W(t) = exp[rU1(t) − rt(c − a) − λt{MY (−r) − 1}].

It can be shown that W(t) is a martingale in a cycle, for −∞ < r < ∞. See Appendix.

Proposition 2. Let θ be the solution of

a(r) = r(c − a) + λ{MY (−r) − 1} = 0,

then θ > 0 exists uniquely, when 0 < c − a < λµ.
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Proof: Note that a(0) = 0 and limr→∞ a(r) = ∞. Moreover,

a′(r) = (c − a) − λM′Y (−r) and a′′(r) = λM′′Y (−r).

Since a′(0) = (c − a) − λµ < 0 and a′′(r) > 0, for all r > 0, there exists a unique positive solution of
a(r) = 0. �

Remark 1. When Y is an exponential random variable with mean µ,

θ =
λµ − (c − a)

(c − a)µ
.

In summary, W1(t) = eθU1(t) is a martingale in a cycle, with θ > 0 satisfying a(θ) = 0.

For x ≥ V , define the first exit time of U1(t), starting from u (V ≤ u ≤ x), out of [V, x) as

Tu = inf{t ≥ 0 : U1(t) < [V, x)},

then Tu is a stopping time with respect to U1(t), and hence, with respect to W1(t). Applying the
optional sampling theorem to W1(t) with Tu, we have the following proposition.

Proposition 3. Let Pu
x be the probability that U1(t), starting from u (V ≤ u ≤ x), reaches x > V

before it goes below V, and let Pu
V be the probability that U1(t) goes below V without reaching x > V,

then

Pu
x =

eθu − eθV MYe(−θ)
eθx − eθV MYe(−θ) = 1 − Pu

V ,

where MYe (−θ) =
∫ ∞

0 e−θydGe(y) = (1/µθ)[1 − MY (−θ)].

Proof: Applying the optional sampling theorem to W1(t) = eθU1(t) with Tu gives

eθu = E[W1(Tu)]
= P [U1(Tu) < V] E [W1(Tu)|U1(Tu) < V] + P [U1(Tu) = x] E [W1(Tu)|U1(Tu) = x]

= Pu
V E

[
eθ(V−Ye)

]
+ Pu

xeθx

= Pu
V

∫ ∞

0
eθ(V−y)dGe(y) + Pu

xeθx

= Pu
VeθV MYe (−θ) + Pu

xeθx.

Since Pu
x + Pu

V = 1, the result follows, immediately. �

Remark 2.

Pu
V = 1 − Pu

x =
eθx − eθu

eθx − eθV MYe (−θ)
.

Let T (x) be the duration that U1(t), starting from V , stays over x ≥ V in a cycle. Observe that,
once U1(t) crosses x, the duration that U1(t) stays over x, before it goes below x, is stochastically
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equal to T , for all x ≥ V , since U1(t) satisfies the Markovian property in a cycle. Let T1,T2, . . . be a
sequence of i.i.d. random variables having the same distribution as T , then,

T (x) =



0, with probability PV
V ,

T1, with probability PV
x Px−Ye

V ,

T1 + T2, with probability PV
x Px−Ye

x Px−Ye
V ,

...

T1 + T2 + · · · + Tn, with probability PV
x

(
Px−Ye

x

)n−1
Px−Ye

V ,

where Px−Ye
V = Ḡe(x − V) +

∫ x−V
0 Px−y

V dGe(y), with Ḡe = 1 −Ge, is the probability that U1(t), starting

from x, goes below V without crossing x again, and Px−Ye
x =

∫ x−V
0 Px−y

x dGe(y) is the probability that
U1(t), starting from x, crosses x again before it goes below V . Note that Px−Ye

V + Px−Ye
x = 1.

Since T (x) is a kind of geometric random variable, it can be show that

E[T (x)] = E(T )
PV

x

Px−Ye
V

.

Finally, since U1(t) is a regenerative process with cycles of length T , by the renewal reward theorem
of Ross (1996, pp. 133–135), the stationary distribution of U1(T ) is given by

F̄1(x) =
E[T (x)]

E(T )
=

PV
x

Px−Ye
V

= 1 − F1(x).

2.2. Stationary distribution of U2(t)

The approach in Section 2.1 used to obtain the stationary distribution of U1(t) is not applicable in this
section to obtain the stationary distribution of U2(t). Though U2(t) is also a regenerative process with
cycles starting with V −Ye, U2(t) passes x ≤ V down jump-wise, and hence, the amount of drop below
x is not stochastically specified and the expected duration that U2(t) stays below x is hardly calculable.
Therefore, we adopt a different approach, which is, establishing an integro-differential equation for
the distribution function of U2(t) and solving the equation to obtain the moment generating function
of the stationary distribution of U2(t).

Let F2(x, t) be the distribution function of U2(t), that is,

F2(x, t) = P{U2(t) ≤ x}, for −∞ < x < V,

and F2(x) be the stationary distribution function of U2(t). Conditioning on whether a claim arrives in
a small interval [t, t + ∆t], we can have the following relations between U2(t) and U2(t + ∆t):

(i) If no claims arrive, then

U2(t + ∆t) =
{

U2(t) + c∆t, when U2(t) ≤ V − c∆t,
V − Ye + c∆t, when V − c∆t < U2(t) ≤ V.

(ii) If a claim arrives, then

U2(t + ∆t) = U2(t) + c∆t − Y.
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Recall that the amount of drop below V is equal to Ye and note that two or more claims arrive in a
small interval [t, t + ∆t] is o(∆t). Hence, we can obtain the following equation for −∞ < x ≤ V ,

P{U2(t + ∆t) ≤ x} = [1 − λ∆t + o(∆t)][P {U2(t) ≤ x − c∆t,U2(t) ≤ V − c∆t}
+ P{V − Ye ≤ x − c∆t,V − c∆t < U2(t) ≤ V}]
+ [λ∆t + o(∆t)]P{U2(t) − Y ≤ x − c∆t} + o(∆t).

Representing the equation for F2(x, t), we have

F2(x, t + ∆t) = [1 − λ∆t + o(∆t)][F2(x − c∆t, t) + P{V − Ye ≤ x − c∆t}{F2(V, t) − F2(V − c∆t, t)}]
+ [λ∆t + o(∆t)]P{U2(t) − Y ≤ x − c∆t} + o(∆t).

Here, applying Taylor series expansion on F2(x − c∆t, t) gives

F2(x − c∆t, t) = F2(x, t) − c∆t
∂

∂x
F2(x, t) + o(∆t).

Observe also that conditioning on Y yields

P{U2(t) − Y ≤ x − c∆t} =
∫ ∞

0
F2(x − c∆t + y, t)dG(y)

=

∫ V−x+c∆t

0
F2(x − c∆t + y, t)dG(y) + Ḡ(V − x + c∆t)

since F2(x, t) = 1 for x ≥ V . Inserting these two equations into the above equation of F2(x − c∆t, t),
we have

F2(x, t + ∆t) = F2(x, t) − c∆t
∂

∂x
F2(x, t) − λ∆tF2(x, t) + Ḡe(V − x + c∆t){F2(V, t) − F2(V − c∆t, t)}

+ λ∆t
[∫ V−x+c∆t

0
F2(x − c∆t + y, t)dG(y) + Ḡ(V − x + c∆t)

]
+ o(∆t).

Subtracting F2(x, t) from both sides of the equation, dividing by ∆t, and letting ∆t → 0, we have
the following integro-differential equation for F2(x, t):

∂

∂t
F2(x, t) = −c

∂

∂x
F2(x, t) − λF2(x, t) + c f2(V, t)Ḡe(V − x) + λ

∫ V−x

0
F2(x + y, t)dG(y) + λḠ(V − x),

where f2(V, t) = (∂/∂x)F2(x, t)|x=V .
Now, in the stationary case, (∂/∂t)F2(x, t) = 0, and hence, F2(x) satisfies

0 = −c
∂

∂x
F2(x) − λF2(x) + c f2(V)Ḡe(V − x) + λ

∫ V−x

0
F2(x + y)dG(y) + λḠ(V − x),

where f2(V) = (d/dx)F2(x)|x=V . Let M2(r) =
∫ V
−∞ erxdF2(x) be the moment generating function of

F2(x). Multiplying both sides of the above equation by erx and taking Stieltjes integrals on both sides
give

0 = −c
[
erV f2(V) − rM2(r)

]
− λM2(r) + c f2(V)erV MYe (−r) + λM2(r)MY (−r),
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where MY (−r) =
∫ ∞

0 e−rydG(y) and MYe (−r) =
∫ ∞

0 e−rydGe(y) = (1/µr)[1 − MY (−r)].
Solving the above equation for M2(r), we have

M2(r) =
cerV f2(V)

[
1 − MYe (−r)

]
cr − λ + λMY (−r)

.

Since M2(0) = 1, we can obtain f2(V) by applying l’Hôpital’s rule, which is given by

f2(V) =
c − λµ
cE(Y)e

=
2µ(c − λµ)

cE(Y2)
.

Finally, M2(r) is given by

M2(r) =
2erV (c − λµ)[µr − 1 + MY (−r)]

rE(Y2)[cr − λ + λMY (−r)]
.

2.3. Stationary distribution of U(t)

We, in this section, find the stationary distribution of the original process, U(t), based on the results
of Sections 2.1 and 2.2. Recall that U1(t) is a regenerative process with cycles of expected length

E(T1) =
E

(
Y2

)
2µ[λµ − (c − a)]

.

Here, for the convenience of notation, we use T1 instead of T .
Note that U2(t) is also a regenerative process with cycles starting when the surplus level drops

below V by an amount of Ye from V . Let T2 denote the length of a cycle, then it can be written as

T2 = inf{t ≥ 0 : U2(t) < (−∞,V]}

and T2 is a stopping time with respect to U2(t). To obtain E(T2), we consider the following process in
a cycle:

L(t) = U2(t) − E[U2(t)].

It can be shown that L(t) is a martingale in a cycle with E[L(t)] = 0. We omit the proof, since it
is similar to that of showing M(t) being a martingale. Applying the optional sampling theorem to L(t)
with T2, we can have the following proposition:

Proposition 4.

E(T2) =
E

(
Y2

)
2µ(c − λµ)

.

Proof: We can show that in a cycle,

E[U2(t)] = V − E(Ye) + ct − λµt

with U2(0) = V − E(Ye). Note that T2 is the first time that U2(t) crosses V in a cycle. Applying the
optional sampling theorem to L(t) with T2 gives

0 = E[L(T2)] = E[U2(T2) − {V − E(Ye) + cT2 − λµT2}].
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Since E[U2(T2)] = V and E(Ye) = E(Y2)/2µ, the result follows. �

Finally, observe that the original process, U(t), is also a regenerative process with cycles in which
the cycles of U1(t) and U2(t) alternate with weights E(T1) and E(T2), which are the expected lengths
of cycles of U1(t) and U2(t), respectively. Hence, from the renewal reward theorem of Ross (1996,
pp. 133–135), the stationary distribution of U(t) is given by

F(x) =
E(T1)F1(x) + E(T2)F2(x)

E(T1) + E(T2)
, for −∞ < x < ∞,

where F2(x) can be obtained from its moment generating function, M2(r), by an inversion.

Remark 3. It is not easy to invert M2(r) to find F2(x), theoretically, however, it will be possible to
do, numerically, if the distribution function G(y) and parameters, c, λ, and V , are specified, in practice.

Appendix:

Proof of M(t)M(t)M(t) being a martingale: It is enough to show E[M(t + s)|M(u), 0 ≤ u ≤ t] = M(t), for
s > 0, and t > 0:

E[M(t + s)|M(u), 0 ≤ u ≤ t]
= E[U1(t + s) − E[U1(t + s)]|U1(u), 0 ≤ u ≤ t]
= E[U1(t + s)|U1(u), 0 ≤ u ≤ t] − E[E[U1(t + s)]|U1(u), 0 ≤ u ≤ t]
= E[U1(t + s) − U1(t)|U1(u), 0 ≤ u ≤ t] + E[U1(t)|U1(u), 0 ≤ u ≤ t] − E[U1(t + s)]
= (c − a)s − λµs + U1(t) − {(c − a)s − λµs + E[U1(t)]}
= U1(t) − E[U1(t)]
= M(t).

�

Proof of W(t) being a martingale: It is enough to show E[W(t + s)|W(u), 0 ≤ u ≤ t] = W(t), for
s > 0, and t > 0:

E [W(t + s)|W(u), 0 ≤ u ≤ t]
= E

[
exp [rU1(t + s) − λ(t + s){MY (−r) − 1} − r(t + s)(c − a)] |W(u), 0 ≤ u ≤ t

]
= E

[
exp

[
rU1(t) − rΣN(t+s)

i=N(t) Yi − λt{MY (−r) − 1} − λs{MY (−r) − 1} − rt(c − a)
] ∣∣∣∣W(u), 0 ≤ u ≤ t

]
= E

[
exp[rU1(t) − λt{MY (−r) − 1} − rt(c − a)] × exp

[
−rΣN(t+s)

i=N(t) Yi − λs{MY (−r) − 1}|W(u), 0 ≤ u ≤ t
]]

= W(t)e−λs{MY (−r)−1}E
[
exp

[
−rΣN(t+s)

i=N(t) Yi|W(u), 0 ≤ u ≤ t
]]
, by independent increments

= W(t)e−λs{MY (−r)−1}E
[
exp

[
−rΣN(s)

i=1 Yi

]]
, by stationary increments

= W(t)e−λs{MY (−r)−1}eλs{MY (−r)−1}

= W(t).

�
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