• Title/Summary/Keyword: optimum condition

Search Result 4,679, Processing Time 0.035 seconds

Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature (극저온에서 풍속의 영향에 따른 발열기자재의 최적설계)

  • Cho, Hyun Jun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.

The Effect of Solution Heat Treatments on the Microstructure and Corrosion Behaviour for a Duplex Stainless Steel

  • Kim, Ki-Joon;Lee, Joon-Goo;Oh, Jae-Whan;Lee, Myung-Hoon;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.217-227
    • /
    • 2004
  • The bowl in a ship purifier suffers from high stress and high temperature in a detrimental heavy fuel oil environment. Duplex stainless steel(DSS) is a primary material to withstand this harsh condition. Newly-manufactured STS 329 grade DSS has been evaluated by various mechanical and electrochemical test methods. Eight heat treatment(HT) conditions with different temperature and time were applied to the DSS samples to improve corrosion resistance. Microstructure and polarization test results concluded the optimum HT condition was $1.090^{\circ}C$-60 minutes. Confirmation experiments for applying to a real bowl including stress corrosion cracking test exhibited the reproducibility of the optimum HT condition.

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of ST S304 by Regression Analysis (회귀분석을 이용한 STS304의 표면정도에 미치는 엔드밀 가공조건의 상관관계 추정)

  • Ryu, M.R.;Lee, S.J.;Bae, H.J.;Jin, D.K.;Jun, T.O.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1822-1827
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction, spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($R^{2}m$) of regression equation has a fine reliability over 80% and regression equation of surface rough is made by regression analysis.

  • PDF

Tuning Test of a Double-Swirl Gas Turbine Combustor using Six Sigma Tools (Six Sigma 기법을 이용한 이중 스월 가스터빈 연소기의 튜닝시험)

  • Lee, Min Chul;Ahn, Kwang Ick;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.195-196
    • /
    • 2012
  • This paper describes combustion tuning methodology of double-swirl gas turbine combustor using six sigma tools. This methodology is consist of five steps-Define, Identify, Design, Optimize and Verify (DIDOV). First, the NOx reduction target was defined in the step design; second, the current status of the plant was diagnosed in the step of identify; third, the vital few control parameters to achieve the defined target were determined by analyzing the correlation between the control parameters and NOx emissions in the step of design; fourth, the optimum condition was derived from one of the six sigma tools in the step of optimize; finally, the optimum condition was verified by applying the condition to the gas turbine combustor in the step of verify. As a result of the suggested method, averaged NOx emissions were reduced by more than 70% and the standard deviation was improved by more than 60%. Thus, this methodology can be attributed to the efficient reduction of NOx emission with saving combustion tuning time.

  • PDF

A study on friction welding of 2024 aluminium (2024 알루미늄의 마찰용접에 관한 연구)

  • 송오성;강춘식
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1990
  • 2024 Aluminium was welded by domestic manufactured continuous type friction welder. The problems and optimum condition were studied in 2024 Al-2024 Al cases. Mechanical tests and microstructure analysis were studeid. Interfacial temperature of welding was predicted by FDM. The obtained results are as follows: 1) In case of Al-Al, the optimum condition range was wide. 2) At the boundary zone, fine recrystallized zone was not harmful to the mechanical property and no growth of precipitation was observed. 3) In case of Al-Al, temperature gradient can be predictedby FDM and heat input can be taken as weld parameter.

  • PDF

Fabrication and Properties of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 제조 및 특성)

  • 김진사;김충혁
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.436-440
    • /
    • 2003
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/ $SiO_2$/Si) using RF sputtering method according to the deposition condition. The optimum conditions of RF power and Ar/ $O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[$\AA$/min] at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The capacitance characteristics had a stable value within $\pm$4[%]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films were observed above 200[kHz]. SCT thin films used in this study showed the phenomena of dielectric relaxation with the increase of frequency.ncy.

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of Al Alloy by Regression Analysis (회귀분석을 이용한 Al 합금의 표면거칠기에 미치는 엔드밀 가공조건의 상관관계 추정)

  • 이상재;배효준;박흥식;전태옥
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($\textrm{R}^2$) of regression equation has a fine reliability of 87.5% and regression equation of surface rough is made by regression analysis.

The Solid State Bonding or ZrO2/NiTi: (I) Optimizating of Bonding Condition and its Strength (ZrO$_2$와 NiTi 합금의 고상접합 : (I)접합의 최적조건 및 접합강도)

  • Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.654-660
    • /
    • 1991
  • Stabilized Zirconia (3 mol % Yttria, 3Y-TZP) was joined with intermetallic compound NiTi which has similar thermal expansion coefficient. The optimum bonding condition was determined by the Taguchi Method. Under the optimum bonding condition, the 4-point bending strength was as high as 400 MPa. bonding interfaces were examined by optical microscope, SEM, and TEM; reaction products were identified by XRD and TEM, The relationship between products and strength was examined.

  • PDF

Process optimization for the steam injection molding (스팀사출성형에 의한 공정의 최적화)

  • Moon, Yonng-dae
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.10-15
    • /
    • 2015
  • The water has been the suitable for the cooling medium until now. But the water as cooling medium seem to have the limit for high speed injection. The steam plastic molding injection use the steam as the medium when raise the mold temperature. The weld line has been the major quality problems in a plastic injection parts to be difficult to be solved. These problems in injection-molded plastic parts are difficult to find the reason because these issues are usually in tradeoff realtions with each other. The purpose of this paper is to obtain the optimum injection moulding condition for improving the quality of plastic injection parts and to inquire the productivity improvement with the measured cycle time by steam plastic moluding injection. Based on these numerical results, the guidelines of mould design and injection processing condition were established. As a result, the improvement of quality and the reduction of cycle time was achieved.

  • PDF