• 제목/요약/키워드: optimality theorems

검색결과 23건 처리시간 0.023초

ON SUFFICIENT OPTIMALITY THEOREMS FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Lee, Gue-Myung
    • 대한수학회논문집
    • /
    • 제16권4호
    • /
    • pp.667-677
    • /
    • 2001
  • We consider a nonsmooth multiobjective opimization problem(PE) involving locally Lipschitz functions and define gen-eralized invexity for locally Lipschitz functions. Using Fritz John type optimality conditions, we establish Fritz John type sufficient optimality theorems for (PE) under generalized invexity.

  • PDF

OPTIMALITY CONDITIONS AND DUALITY IN FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee;Kim, Gwi Soo
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.345-349
    • /
    • 2015
  • In this paper, we consider a fractional robust optimization problem (FP) and give necessary optimality theorems for (FP). Establishing a nonfractional optimization problem (NFP) equivalent to (FP), we formulate a Mond-Weir type dual problem for (FP) and prove duality theorems for (FP).

ON DUALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.723-734
    • /
    • 2013
  • A robust optimization problem, which has a maximum function of continuously differentiable functions as its objective function, continuously differentiable functions as its constraint functions and a geometric constraint, is considered. We prove a necessary optimality theorem and a sufficient optimality theorem for the robust optimization problem. We formulate a Wolfe type dual problem for the robust optimization problem, which has a differentiable Lagrangean function, and establish the weak duality theorem and the strong duality theorem which hold between the robust optimization problem and its Wolfe type dual problem. Moreover, saddle point theorems for the robust optimization problem are given under convexity assumptions.

OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.371-377
    • /
    • 2015
  • We consider a nondifferentiable robust optimization problem, which has a maximum function of continuously differentiable functions and support functions as its objective function, continuously differentiable functions as its constraint functions. We prove optimality conditions for the nondifferentiable robust optimization problem. We formulate a Wolfe type dual problem for the nondifferentiable robust optimization problem and prove duality theorems.

ON OPTIMALITY THEOREMS FOR SEMIDEFINITE LINEAR VECTOR OPTIMIZATION PROBLEMS

  • Kim, Moon Hee
    • East Asian mathematical journal
    • /
    • 제37권5호
    • /
    • pp.543-551
    • /
    • 2021
  • Recently, semidefinite optimization problems have been intensively studied since many optimization problem can be changed into the problems and the the problems are very computationable. In this paper, we consider a semidefinite linear vector optimization problem (VP) and we establish the optimality theorems for (VP), which holds without any constraint qualification.

ROBUST DUALITY FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • 충청수학회지
    • /
    • 제30권1호
    • /
    • pp.31-40
    • /
    • 2017
  • In this paper, we consider a nonsmooth multiobjective robust optimization problem with more than two locally Lipschitz objective functions and locally Lipschitz constraint functions in the face of data uncertainty. We prove a nonsmooth sufficient optimality theorem for a weakly robust efficient solution of the problem. We formulate a Wolfe type dual problem for the problem, and establish duality theorems which hold between the problem and its Wolfe type dual problem.

OPTIMALITY CONDITIONS AND DUALITY MODELS FOR MINMAX FRACTIONAL OPTIMAL CONTROL PROBLEMS CONTAINING ARBITRARY NORMS

  • G. J., Zalmai
    • 대한수학회지
    • /
    • 제41권5호
    • /
    • pp.821-864
    • /
    • 2004
  • Both parametric and parameter-free necessary and sufficient optimality conditions are established for a class of nondiffer-entiable nonconvex optimal control problems with generalized fractional objective functions, linear dynamics, and nonlinear inequality constraints on both the state and control variables. Based on these optimality results, ten Wolfe-type parametric and parameter-free duality models are formulated and weak, strong, and strict converse duality theorems are proved. These duality results contain, as special cases, similar results for minmax fractional optimal control problems involving square roots of positive semi definite quadratic forms, and for optimal control problems with fractional, discrete max, and conventional objective functions, which are particular cases of the main problem considered in this paper. The duality models presented here contain various extensions of a number of existing duality formulations for convex control problems, and subsume continuous-time generalizations of a great variety of similar dual problems investigated previously in the area of finite-dimensional nonlinear programming.

ON OPTIMALITY AND DUALITY FOR GENERALIZED NONDIFFERENTIABLE FRACTIONAL OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Kim, Gwi-Soo
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.139-147
    • /
    • 2010
  • A generalized nondifferentiable fractional optimization problem (GFP), which consists of a maximum objective function defined by finite fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions, is considered. Recently, Kim et al. [Journal of Optimization Theory and Applications 129 (2006), no. 1, 131-146] proved optimality theorems and duality theorems for a nondifferentiable multiobjective fractional programming problem (MFP), which consists of a vector-valued function whose components are fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions. In fact if $\overline{x}$ is a solution of (GFP), then $\overline{x}$ is a weakly efficient solution of (MFP), but the converse may not be true. So, it seems to be not trivial that we apply the approach of Kim et al. to (GFP). However, modifying their approach, we obtain optimality conditions and duality results for (GFP).