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SEQUENTIAL OPTIMALITY THEOREMS FOR

SECOND-ORDER CONE LINEAR FRACTIONAL VECTOR

OPTIMIZATION PROBLEMS

Moon Hee Kim

Abstract. In this paper, we consider a second-order cone linear frac-

tional vector optimization problems (FVP), and obtain sequential opti-
mality theorems for (FVP) which hold without any constraint qualification

and which are expressed by sequences.

1. Preliminary Results and Introduction

Jeyakumar, Lee and Dinh [9] proved optimality theorems for convex opti-
mization problem, which held without any constraint qualification and which
were expressed in terms of sequences. We call the theorems as sequential op-
timality ones. Such optimality theorems have been studied for many kinds of
convex optimization problems. In particular, Kim and Lee [11] studied sequen-
tial optimality conditions for efficient solutions of semidefinite linear fractional
vector optimization problems. Kim, Kim and Lee [12] investigated sequential
optimality theorems for weakly efficient solutions for semidefinite linear frac-
tional vector optimization problems. Linear fractional vector optimization and
pseudo linear fractional optimization were studied in [3, 4].

In this paper, we consider a second-order cone linear fractional vector opti-
mization problem (FVP) and establish sequential optimality theorems for effi-
cient solutions and properly efficient solutions which hold without any constraint
qualification and which are expressed by sequences.

Let X be a Hilbert space with inner product ⟨·, ·⟩. For a subset D ⊂ X, the
closure of D, induced by the norm topology on X, is denoted by clD.

Let C be a closed convex cone in X. Then the positive dual cone of C is
defined by

C∗ := {z ∈ X : ⟨x, z⟩ ≧ 0 ∀x ∈ C}.

Received April 10, 2023; Revised April 17, 2023; Accepted August 14, 2023.
2010 Mathematics Subject Classification. 90C25, 90C30, 90C46.
Key words and phrases. second-order cone linear fractional vector optimization problems,

properly efficient solutions, efficient solutions, optimality theorems.
This work was supported by the National Research Foundation of Korea(NRF) grant

funded by the Korea government(MSIT) (NRF-2022R1A2C1003309).

©2023 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

505



506 M. H. KIM

The indicator function δA : X → R ∪ {+∞} is defined by

δA :=

{
0 if x ∈ A,
+∞ otherwise.

Let h : X → R ∪ {+∞} be a function. The conjugate function of h, h∗ : X →
R ∪ {+∞}, is defined by

h∗(v) := sup{⟨v, x⟩ − h(x) : x ∈ domh}

where domh := {x ∈ X | h(x) < +∞}.
The function h is said to be proper if h does not take the value −∞ and

domh ̸= ∅. The epigraph of the function h is defined by

epih := {(x, r) ∈ X × R : h(x) ≦ r}.

Moreover if lim infy→xh(y) ≧ h(x) for all x ∈ X, we say that h is lower
semicontinuous. A function h : X → R ∪ {+∞} is said to be convex if for all
λ ∈ [0, 1],

h(λx+ (1− λ)y) ≦ λh(x) + (1− λ)h(y) for all x, y ∈ X.

Lemma 1.1. [1] Let h1, h2 : X → R ∪ {+∞} be proper lower semicontinuous
convex functions. Then epi(h1 + h2)

∗ = cl(epi h∗
1 +epi h∗

2). If, in addition, one
of h1 and h2 is continuous at some x0 ∈ dom h1 ∩ dom h2, then

epi(h1 + h2)
∗ = epi h∗

1 + epi h∗
2.

Lemma 1.2. [13] Let I be an arbitrary index set and let hi : X → R∪{+∞} be
proper lower semicontinuous convex functions. Suppose that there exists x0 ∈ X
such that supi∈I hi(x0) < ∞. Then

epi(sup
i∈I

hi)
∗ = clco

⋃
i∈I

epi h∗
i

where supi∈I hi : X → R∪{+∞} is defined by (supi∈I hi)(x) = supi∈I hi(x) for
all x ∈ X.

In this paper, we consider a second-order cone fractional vector optimization
problem:

(FVP) Minimize
(cT1 x+ α1

dT1 x+ β1
, · · · ,

cTp x+ αp

dTp x+ βp

)
subject to x ∈ {x ∈ Rn : ∥Hx+ e∥ ≦ aTx+ b},

where ci, di ∈ Rn, i = 1, · · · , p, αi, βi, i = 1, · · · , p, are given real numbers, H

is an (m−1)×n matrix, e ∈ Rm−1, a ∈ Rn, b ∈ R and ∥z∥ =
√
zT z, z ∈ Rm−1.

Let K = {(y, t)T ∈ Rm−1 × R | ∥y∥ ≦ t}, that is, K is a second-order cone
in Rm. Then K is self-dual, that is, K∗ = K.
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Define △ := {x ∈ Rn : ∥Hx + e∥ ≦ aTx + b}. Then △ = {x ∈ Rn :(
Hx+ e
aTx+ b

)T

∈ K}. We assume that △ ̸= ∅. Assume that dTi x+ βi > 0, i =

1, · · · , p, for any x ∈ △. Let qi(x) :=
cTi x+αi

dT
i x+βi

, i = 1, · · · , p, for any x ∈ △.

Definition 1. (1) x̄ ∈ △ is said to be an efficient solution for (FVP) if there
exists no other feasible x ∈ △ such that(cT1 x+ α1

dT1 x+ β1
, · · · ,

cTp x+ αp

dTp x+ βp

)
≤
(cT1 x̄+ α1

dT1 x̄+ β1
, · · · ,

cTp x̄+ αp

dTp x̄+ βp

)
.

(2) x̄ ∈ △ is said to be a properly efficient solution for (FVP) if x̄ is an
efficient solution of (FVP) and there exists a constant M > 0 such that for each
i = 1, · · · , p, we have

cTi x̄+αi

dT
i x̄+βi

− cTi x+αi

dT
i x+βi

cTj x+αj

dT
j x+βj

− cTj x̄+αj

dT
j x̄+βj

≦ M

for some j such that
cTj x+αj

dT
j x+βj

>
cTj x̄+αj

dT
j x̄+βj

whenever x ∈ △ and
cTi x+αi

dT
i x+βi

<
cTi x̄+αi

dT
i x̄+βi

.

2. Sequential Optimality Theorems

Now we give the following necessary optimality theorem for the efficient so-
lution and the properly efficient solution of (FVP):

Theorem 2.1. Let λ ∈ Rp be such that λi > 0, i = 1, · · · , p. Let x̄ ∈ △. Then
the following are equivalent:

(i) x̄ is an efficient solution of (FVP);
(ii) there exist µ ∈ K, yj ≧ 0, j = 1, · · · , p,

(0, 0) ∈
{ p∑

i=1

λi(ci − qi(x̄)di,−αi + qi(x̄)βi)
}
+ {0} × R+

+cl
( ⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}

+
⋃
yj≧0

{
p∑

j=1

yj(cj − qj(x̄)dj ,−αj + qj(x̄)βj)}+ {0} × R+
)
.

(iii) there exist µl ∈ K and ylj ≧ 0, j = 1, · · · , p, such that

p∑
i=1

λi(ci − qi(x̄)di) + lim
l→∞

[
−
(

H
aT

)T

µl +

p∑
j=1

ylj(cj − qj(x̄)dj)
]
= 0

and lim
l→∞

(
Hx̄+ e
aT x̄+ b

)T

µl = 0.
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Proof. ((i) ⇒ (ii)) Let x̄ be an efficient solution of (FVP). Then x̄ is an
efficient solution of the following vector optimization problem:

Minimize
(
cT1 x+ α1 − q1(x̄)(d

T
1 x+ β1), · · · , cTp x+ αp − qp(x̄)(d

T
p x+ βp)

)
subject to x ∈ {x ∈ Rn : ∥Hx+ e∥ ≦ aTx+ b}.

Then we can check that x̄ is an optimal solution of the problem (P):

Minimize

p∑
i=1

λi

[
cTi x+ αi − qi(x̄)(d

T
i x+ βi)

]
subject to x ∈ {x ∈ Rn |∥Hx+ e∥ ≦ aTx+ b},

cTj x+ αj − qj(x̄)(d
T
j x+ βj) ≦ 0, j = 1, · · · , p.

Let △ = {x ∈ Rn : ∥Hx + e∥ ≦ aTx + b} and A = {x ∈ Rn : cTj x +

αj − qj(x̄)(d
T
j x + βj) ≦ 0, j = 1, · · · , p}. Let △̃ = △ ∩ A. Then δ△̃(x) =

δ△(x) + δA(x). By Lemma 1.1,

epiδ∗△̃ = cl(epiδ∗△ + epiδ∗A).

Let F (x) :=
∑p

i=1 λi

[
cTi x+αi−qi(x̄)(d

T
i x+βi)

]
. Since x̄ is an optimal solution

of (P), F (x)+δ△̃(x) ≧ F (x̄)+δ△̃(x̄) for any x ∈ △. Thus 0·x−[F (x)+δ△̃(x)] ≦
0 for any x ∈ △. Thus (F + δ△̃)∗(0) ≦ 0,

(0, 0) ∈ epi(F + δ△̃)∗ = epiF ∗ + epiδ∗△̃.

Using Lemma 1.2 and Theorem 4.1 in [10], we can check that

epiF ∗ =
{ m∑

i=1

λi(ci − qi(x̄)di,−αi + qi(x̄)βi)
}
+ {0} × R+,

epiδ∗△ = cl
( ⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}
+ {0} × R+

)
epiδ∗A = cl

[ ⋃
yj≧0

{
p∑

j=1

yj(cj − qj(x̄)dj ,−αj + qi(x̄)βj)}+ {0} × R+
]
.

Thus (ii) holds.
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((ii) ⇒ (iii)) Suppose that (ii) holds. Then there exist µl ∈ K, r ∈ R+ and
rl ∈ R+ such that

p∑
i=1

λi(ci − qi(x̄)di) + lim
l→∞

[
−
(

H
aT

)T

µl +

p∑
j=1

ylj(cj − qj(x̄)dj)
]
= 0(1)

p∑
i=1

λi(−αi + qi(x̄)βi) + r (2)

+ lim
l→∞

[
−
(

e
b

)T

µl +

p∑
j=1

ylj(−αj + qj(x̄)βj) + rl
]
= 0.

From (2.1),

0 =

p∑
i=1

λi(ci − qi(x̄)di)x̄ (3)

+ lim
l→∞

[
−
(

H
aT

)T

µl +

p∑
j=1

ylj(cj − qj(x̄)dj)
]T

x̄

From (2.2) and (2.3),

0 = −r − lim
l→∞

[( Hx̄+ e
aT x̄+ b

)T

µl + rl
]
.

Since rl ≧ 0 and r ≧ 0, we have

r = 0, lim
l→∞

(
Hx̄+ e
aT x̄+ b

)T

µl = 0 and lim
l→∞

rl = 0.

Thus (iii) holds.
((iii) ⇒ (i)) Suppose that (iii) holds. Then for any x ∈ △,

p∑
i=1

λi

[
cTi (x− x̄)− qi(x̄)d

T
i (x− x̄)

]
+ lim

l→∞

[
−
(

H(x− x̄)
aT (x− x̄)

)T

µl +

p∑
j=1

ylj

(
cTj (x− x̄)− qi(x̄)d

T
j (x− x̄)

)]
= 0.
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So, for any x ∈ △,

p∑
i=1

λi(c
T
i x+ αi − qi(x̄)(d

T
i x+ βi)) + lim

l→∞

[
−
(

Hx+ e
aTx+ b

)T

µl

+

p∑
j=1

ylj(c
T
j x+ αj − qj(x̄)(d

T
j x+ βj))

]
−

p∑
i=1

λi(c
T
i x̄+ αi − qi(x̄)(d

T
i x̄+ βi))

− lim
l→∞

[
−
(

Hx̄+ e
aT x̄+ b

)T

µl +

p∑
j=1

ylj(c
T
j x̄+ αj − qj(x̄)(d

T
j x̄+ βj))

]
= 0.

Since cTj x̄+αj −qj(x̄)(d
T
j x̄+βj)+ liml→∞

[
−
(

Hx̄+ e
aT x̄+ b

)T

µl
]
= 0 and cTj x+

αj − qj(x̄)(d
T
j x + βj) + liml→∞

[
−
(

Hx+ e
aTx+ b

)T

µl
]
≦ 0 for any x ∈ △̃, we

have, for any x ∈ △̃,

p∑
i=1

λi

[
cTi x+ αi − qi(x̄)(d

T
i x̄+ βi)

]
≧

p∑
i=1

λi

[
cTi x̄+ αi − qi(x̄)(d

T
i x̄+ βi)

]
.

Thus x̄ is an optimal solution of the problem (P). Then we can check that x̄ is
an efficient solution of (FVP). Hence (i) holds. □

We give an assumption for (FVP):

Assumption C:
{

dT
i x+βi

dT
j x+βj

| i ̸= j, x ∈ △
}

is bounded above.

Following Proposition 2.3 in [11], we can obtain the following proposition:

Proposition 2.2. The Assumption C is satisfied. Let x̄ ∈ △. Then the follow-
ing are equivalent:

(i) x̄ is a properly efficient solution of (FVP);
(ii) x̄ is a properly efficient solution of the following linear vector optimization

problem:

(LVP)

Minimize
(
cT1 x+ α1 − q1(x̄)(d

T
1 x+ β1), · · · , cTp x+ αp − qp(x̄)(d

T
p x+ βp)

)
subject to x ∈ △.

Proof. Let x̄ ∈ △. Then the following are equivalent:
(i) x̄ is a properly efficient solution of (FVP).

(ii) (1) there does not exist x ∈ △ such that
cTi x+αi

dT
i x+βi

≦ cTi x̄+αi

dT
i x̄+βi

for all i =

1, · · · , p and
cTj x+αj

dT
j x+βj

<
cTj x̄+αj

dT
j x̄+βj

for some j ∈ {1, · · · , p}.
(2) there exists M > 0 such that, for each i = 1, · · · , p and each x ∈ △

satisfying
cTi x+αi

dT
i x+βi

<
cTi x̄+αi

dT
i x̄+βi

, there exists for each j ∈ {1, · · · , p} such that
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cTj x̄+αj

dT
j x̄+βj

<
cTj x+αj

dT
j x+βj

and

cTi x̄+αi

dT
i x̄+βi

− cTi x+αi

dT
i x+βi

cTj x+αj

dT
j x+βj

− cTj x̄+αj

dT
j x̄+βj

≦ M.

(iii) (1) there does not exist x ∈ △ such that

cTi x+ αi − qi(x̄)(d
T
i x+ βi) ≦ 0 = cTi x̄+ αi − qi(x̄)(d

T
i x̄+ βi)

for all i = 1, · · · , p and cTj x+αj−qj(x̄)(d
T
j x+βj) < 0 = cTj x̄+αj−qj(x̄)(d

T
j x̄+

βj), for some j ∈ {1, · · · , p}.
(2) there exists M > 0 such that for each i and each x ∈ △ satisfying

cix + αi − qi(x̄)(d
T
i x + βi) < cTi x̄ + αi − qi(x̄)(d

T
i x̄ + βi), there exists for each

j ∈ {1, · · · , p} such that cTj x̄+αj−qj(x̄)(d
T
j x̄+βj) < cTj x+αj−qj(x̄)(d

T
j x+βj)

and

(cTi x̄+ αi − qi(x̄)(d
T
i x̄+ βi))− (cTi x+ αi − qi(x̄)(d

T
i x+ βi))

(cTj x+ αj − qj(x̄)(dTj x+ βj))− (cTj x̄+ αj − qj(x̄)(dTj x̄+ βj))

≦
dTi x+ βi

dTj x+ βj
M.

Thus the result holds. □
Following the proof of Theorem 2 in [7], and using Proposition 2.2, we can

obtain the following proposition:

Proposition 2.3. The Assumption C is satisfied. Let x̄ ∈ △. Then the follow-
ing are equivalent:

(i) x̄ is a properly efficient solution of (FVP);
(ii) there exist λi > 0, i = 1, · · · , p such that x̄ is an optimal solution of the

following linear optimization problem:

(LP) Minimize

p∑
i=1

λi

(
cTi x+ αi − qi(x̄)(d

T
i x+ βi)

)
subject to x ∈ △.

Using Proposition 2.3 and following the proof of Theorem 2.1, we can obtain
the following optimality theorem for properly efficient solution of (FVP):

Theorem 2.4. The Assumption C is satisfied. Let x̄ ∈ △. Then the following
are equivalent:

(i) x̄ is a properly efficient solution of (FVP);
(ii) there exist λi > 0, i = 1, · · · , p, (

∑p
i=1 λi = 1), µ ∈ K such that

(0, 0) ∈
{ p∑

i=1

λi(ci − qi(x̄)di,−αi + qi(x̄)βi)
}
+ {0} × R+

+cl
( ⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}
+ {0} × R+

)
.
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(iii) there exist λi > 0, i = 1, · · · , p, (
∑p

i=1 λi = 1), µl ∈ K such that

p∑
i=1

λi(ci − qi(x̄)di) + lim
l→∞

[
−
(

H
aT

)T

µl
]
= 0

and lim
l→∞

(
Hx̄+ e
aT x̄+ b

)T

µl = 0.

The following theorem, which is second-order cone programming version of
the Isermann’s result [6, 8, 11, 14], gives a sufficient condition that an efficient
solution of (FVP) can be properly efficient solution of (FVP).

Theorem 2.5. The Assumption C is satisfied. Let x̄ ∈ △. Assume that

⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}

+
⋃
yj≧0

{
p∑

j=1

yj(cj − qj(x̄)dj ,−αj + qj(x̄)βj)}+ {0} × R+

is closed. If x̄ is an efficient solution of (FVP), then x̄ is a properly efficient
solution of (FVP).

Proof. Let λi > 0, i = 1, · · · , p, (
∑p

i=1 λi = 1). Let x̄ is an efficient solution
of (FVP). By Theorem 2.1,

(0, 0) ∈ {
p∑

i=1

λi(ci − qi(x̄)di,−αi + qi(x̄)βi)}+ {0} × R+

+cl
[ ⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}

+
⋃
yj≧0

{
p∑

j=1

yj(cj − qj(x̄)dj ,−αj + qj(x̄)βj)}+ {0} × R+

]
.

By assumption,

(0, 0) ∈
p∑

i=1

λi(ci − qi(x̄)di,−αi + qi(x̄)βi)

+
⋃
µ∈K

{(
−
(

H
aT

)T

µ,

(
e
b

)T

µ

)}

+
⋃
yj≧0

{
p∑

j=1

yj(cj − qj(x̄)dj ,−αj + qj(x̄)βj)}+ {0} × R+.
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So, there exist µ̄ ∈ K and ȳj ≧ 0, j = 1, · · · , p, and r̄ ≧ 0 such that

0 =

p∑
i=1

(λi + ȳi)(ci − qi(x̄)di)−
(

H
aT

)T

µ̄ (4)

and 0 =

m∑
i=1

(λi + ȳi)(−αi + qi(x̄)βi) +

(
e
b

)T

µ̄+ r̄. (5)

From (2.4), for any x ∈ △,

0 =

p∑
i=1

(λi + ȳi)(ci − qi(x̄)di)
Tx−

(
Hx
aTx

)T

µ̄. (6)

From (2.5) and (2.6),

r̄ =

p∑
i=1

(λi + ȳi)(c
T
i x+ αi − qi(x̄)(d

T
i x+ βi))−

(
Hx+ e
aTx+ b

)T

µ̄

≦
p∑

i=1

(λi + ȳi)(c
T
i x+ αi − qi(x̄)(d

T
i x+ βi)).

Since r̄ ≧ 0, for any x ∈ △,

p∑
i=1

(λi + ȳi)(c
T
i x+ αi − qi(x̄)(d

T
i x+ βi))

≧ 0 =

p∑
i=1

(λi + ȳi)(c
T
i x̄+ αi − qi(x̄)(d

T
i x̄+ βi)).

Since λi+ ȳi > 0, by Proposition 2.3, x̄ is a properly efficient solution of (FVP).
□
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