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OPTIMALITY CONDITIONS AND DUALITY IN

NONDIFFERENTIABLE ROBUST OPTIMIZATION

PROBLEMS

Moon Hee Kim

Abstract. We consider a nondifferentiable robust optimization problem,

which has a maximum function of continuously differentiable functions
and support functions as its objective function, continuously differentiable

functions as its constraint functions. We prove optimality conditions for

the nondifferentiable robust optimization problem. We formulate a Wolfe
type dual problem for the nondifferentiable robust optimization problem

and prove duality theorems.

1. Introduction

A standard form of nonlinear programming problem with inequality con-
straints

(P) inf
x∈Rn
{f(x) : gi(x) ≤ 0, i = 1, · · · ,m},

where f : Rn → R and gi : Rn → R are continuously differentiable functions.
The problem in the face of data uncertainty in the constraints can be captured
by the following nonlinear programming problem:

(UP) inf
x∈Rn
{f(x, u) : gi(x, vi) ≤ 0, i = 1, · · · ,m},

where u, vi are uncertain parameters and u ∈ U , vi ∈ Vi, i = 1, · · · ,m for
some convex compact sets U ⊂ Rp, Vi ⊂ Rq, i = 1, · · · ,m, respectively and
f : Rn × Rp → R, gi : Rn × Rq → R, i = 1, · · · ,m are continuously differen-
tiable. Sometimes, f(x, u) in (UP) can be f(x) without the uncertain parameter
u ∈ U . Robust optimization, which has emerged as a powerful deterministic
approach for studying mathematical programming under uncertainty ([1] – [4],
[6]), associates with the uncertain program (UP) its robust counterpart [5],

(RP) inf
x∈Rn
{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m},
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where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets U , Vi, i = 1, · · · ,m.

Recently, Kuroiwa and Lee [9] extend the necessary optimality theorem to a
multiobjective robust optimization problem. Furthermore, Kim [8] extend the
robust duality theorems to a multiobjective robust optimization problem.

Now, we consider nondifferentiable robust optimization problem:

(NRP) inf
x∈Rn
{max
u∈U

f(x, u) + s(x|C) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m}.

Let F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m} be the robust feasible
set.

Let x̄ ∈ F and let us decompose J := {1, · · · ,m} into two index sets J =
J1(x̄) ∪ J2(x̄) where J1(x̄) = {j ∈ J | ∃vj ∈ Vj s.t. gj(x̄, vj) = 0} and J2(x̄) =
J\J1(x̄). Let C be a compact convex set of Rn and s(x|C) = max{xT y | y ∈ C}.
Let k(x) = s(x|C). Then k is a convex function and ∂k(x) = {w ∈ C | wTx =
s(x|C)}, where ∂k is the subdifferential of k. For a continuously differentiable
function g : Rn×Rq → R, we use ∇1g to denote the derivative of g with respect
to the first variable.

We say that x̄ is a robust solution of (NRP) if x̄ is a minimizer of (NRP),
that is, x̄ ∈ F and max

u∈U
f(x, u)+s(x|C) ≥ max

u∈U
f(x̄, u)+s(x̄|C) ∀x ∈ Rn, u ∈ U .

In this paper, we consider a nondifferentiable robust optimization problem,
which has a maximum function of continuously differentiable functions and sup-
port functions as its objective function, and continuously differentiable functions
as its constraint functions. We prove optimality conditions for the nondifferen-
tiable robust optimization problem. We formulate a Wolfe type dual problem for
the nondifferentiable robust optimization problem and prove duality theorems.

2. Optimality Theorems

In this section, we give necessary, and sufficient optimality conditions for the
nondifferentiable robust optimization problem (NRP).

Lemma 2.1. [11] Let Θ be a nonempty, compact topological space and let
h : Rn × Θ → R be such that h(·, θ) is differentiable for every θ ∈ Θ and
∇1h(x, θ) is continuous on Rn ×Θ. Let φ(x) = sup

θ∈Θ
h(x, θ). Define Θ̄(x) to be

Θ̄(x) := arg max
θ∈Θ

h(x, θ). Then the function φ(x) is locally Lipschitz continuous,

directionally differentiable and

φ′(x, d) = sup
θ∈Θ̄(x)

∇1h(x, θ)T d,

where φ′(x, d) = limt→0+
φ(x+td)−φ(x)

t .

Now we say that an Extended Mangasarian-Fromovitz constraint qualifica-
tion (EMFCQ) holds at x̄ for (NRP) if there exists d ∈ Rn such that for any
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j ∈ J1(x̄) and any vj ∈ Vj ,

∇1gj(x̄, vj)
T d < 0.

Now we present a necessary optimality theorem for a solution of (NRP).
For the proof of the following theorem, we follow the approaches of proofs for
Theorem 3.1 in [7] and Theorem 3.7 in [9].

Theorem 2.2. Let x̄ ∈ F be a robust solution of (NRP). Suppose that f(x̄, ·)
is concave on U and gj(x̄, ·) are concave on Vj , j = 1, · · · ,m. Then there exist
µj ≥ 0, j = 1, · · · ,m, ū ∈ U , v̄j ∈ Vj , j = 1, · · · ,m and w ∈ C, such that

0 ∈ λ [∇1f(x̄, ū) + w] +

m∑
j=1

µj∇1gj(x̄, v̄j),

f(x̄, ū) = max
u∈U

f(x̄, u),

wT x̄ = s(x̄|C),

µjgj(x̄, v̄j) = 0, j = 1, · · · ,m.

Moreover, if we assume that the Extended Mangasarian-Fromovitz constraint
qualification then we have (EMFCQ) holds, then

0 ∈ ∇1f(x̄, ū) + w +

m∑
j=1

µj∇1gj(x̄, v̄j),

f(x̄, ū) = max
u∈U

f(x̄, u),

wT x̄ = s(x̄|C),

µjgj(x̄, v̄j) = 0, j = 1, · · · ,m.

Proof. Assume that max
vj∈Vj

gj(x̄, vj) < 0, j = 1, · · · ,m, and J1(x̄) = ∅. Then

x̄ ∈ intF , where intF is the interior of F . Let k(x) = s(x|C). Let ψ(x) =
max
u∈U

f(x, u) + k(x). Then U0 = {u ∈ U | f(x̄, u) + k(x̄) = ψ(x̄)}. Then U0 is

convex and compact. By Lemma 2.1, for any d ∈ Rn,

ψ′(x̄, d) = max
u∈U0

∇1f(x̄, u)T d+ k′(x̄; d)

= max
u∈U0

{(∇1f(x̄, u) + w)T d | u ∈ U0, w ∈ ∂k(x̄)}.

So, we can be proved in the same way as the proof of Theorem 3.3 in [9] �

Theorem 2.3. Let x̄ ∈ F and assume that f(x̄, ·) is concave on U and gj(x̄, ·)
are concave on Vj , j = 1, · · · ,m. Suppose that there exist µj ≥ 0, j = 1, · · · ,m,
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ū ∈ U , v̄j ∈ Vj , j = 1, · · · ,m and w ∈ C such that

0 ∈ ∇1f(x̄, ū) + w +

m∑
j=1

µj∇1gj(x̄, v̄j),

f(x̄, ū) = max
u∈U

f(x̄, u),

wT x̄ = s(x̄|C),

µjgj(x̄, v̄j) = 0, j = 1, · · · ,m.

If f(·, ū) and gj(·, v̄j), j = 1, · · · ,m, are convex on Rn, then x̄ ∈ F is a robust
solution of (NRP).

Proof. Let x̄ be feasible for (NRP) and assume that f(x̄, ·) is concave on U and
gj(x̄, ·) are concave on Vj , j = 1, · · · ,m. Suppose that there exist µj ≥ 0, j =
1, · · · ,m, ū ∈ U , v̄j ∈ Vj , j = 1, · · · ,m and w ∈ C such that

∇1f(x̄, ū) + w +

m∑
j=1

µj∇1gj(x̄, v̄j) = 0. (1)

Assume that x̄ is not a robust solution of (NRP). Then there exists a feasible
solution x of (NRP) such that

max
u∈U

f(x, u) + s(x|C) < max
u∈U

f(x̄, u) + s(x̄|C).

Then

f(x, ū) + s(x|C) < f(x̄, ū) + s(x̄|C).

Since wT x̄ = s(x̄|C) and w ∈ C,

f(x, ū) + wTx ≤ f(x, ū) + s(x|C)

< f(x̄, ū) + s(x̄|C)

= f(x̄, ū) + wT x̄.

By the convexity of f(·, ū),

[∇1f(x̄, ū) + w]
T

(x− x̄) < 0. (2)

Since µjgj(x, v̄j) ≤ µjgj(x̄, v̄j), by the convexity of gj(·, v̄j),
m∑
j=1

µj∇1gj(x̄, v̄j)
T (x− x̄) ≤ 0. (3)

From (2) and (3),∇1f(x̄, ū) + w +

m∑
j=1

µj∇1gj(x̄, v̄j)

T (x− x̄) < 0.

From (1), ξ̄T (x− x̄) > 0, which is a contradiction since (1) holds. �
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3. Robust Duality Theorems

In this section, we establish Wolfe type robust duality between (NRP) and
(WD).

(WD) maximize f(x, u) + wTx+

m∑
j=1

µjgj(x, vj)

subject to 0 ∈ ∇1f(x, u) + w +

m∑
j=1

µj∇1gj(x, vj),

w ∈ C, µj ≥ 0, u ∈ U, vj ∈ Vj , j = 1, · · · ,m.

Let V = V1 × · · · × Vm.

Theorem 3.1. (Weak Duality) Let x ∈ Rn be feasible for (NRP) and (x̄, ū, v̄, w̄, µ̄) ∈
Rn×U×V ×C×Rm be feasible for (WD). Suppose that f(·, ū) and gj(·, v̄j), j =
1, · · · ,m are convex, f(x̄, ·) is concave on U and gj(x̄, ·) are concave on Vj, then

max
u∈U

f(x, u) + s(x|C) ≥ f(x̄, ū) + w̄T x̄+

m∑
j=1

µ̄jgj(x̄, v̄j).

Proof. Let x be feasible for (NRP) and (x̄, ū, v̄, w̄, µ̄) be feasible for (WD). Then

∇1f(x̄, ū) + w̄ +

m∑
j=1

µ̄j∇1gj(x̄, v̄j) = 0. Now suppose, contrary to the result.

Then we have

f(x, ū) + w̄Tx ≤ max
u∈U

f(x, u) + s(x|C)

< f(x̄, ū) + w̄T x̄+

m∑
j=1

µ̄jgj(x̄, v̄j).

Since µ̄jgj(x, v̄j) ≤ 0,

f(x, ū) + w̄Tx+

m∑
j=1

µ̄jgj(x̄, v̄j) < f(x̄, ū) + w̄T x̄+

m∑
j=1

µ̄jgj(x̄, v̄j).

By the convexity of f(·, ū) and gj(·, v̄j),∇1f(x̄, ū) + w̄ +

m∑
j=1

µj∇1gj(x̄, v̄j)

T (x− x̄) < 0.

This is a contradiction. �

Theorem 3.2. (Strong Duality) Let x̄ be a solution of (NRP). Assume that
the Extended Mangasarian-Fromovitz constraint qualification holds. Then, there
exist (ū, v̄, w̄, µ̄) such that (x̄, ū, v̄, w̄, µ̄) is feasible for (WD) and the objective
values of (NRP) and (WD) are equal. If f(·, ū) and gj(·, v̄j), j = 1, · · · ,m are



376 MOON HEE KIM

convex, f(x̄, ·) is concave on U and gj(x̄, ·) are concave on Vj, then (x̄, ū, v̄, w̄, µ̄)
is a solution of (WD).

Proof. Since x̄ is a solution of (NRP) at which the Extended Mangasarian-
Fromovitz constraint qualification is satisfied, then by Theorem 2.1, there exists
µ̄j ≥ 0, j = 1, · · · ,m, ū ∈ U , v̄j ∈ Vj , j = 1, · · · ,m, and w̄ ∈ C such that

0 ∈ ∇1f(x̄, ū) + w̄ +

m∑
j=1

µ̄j∇1gj(x̄, v̄j),

f(x̄, ū) = max
u∈U

f(x̄, u),

w̄T x̄ = s(x̄|C),

µ̄jgj(x̄, v̄j) = 0, j = 1, · · · ,m.

Thus (x̄, ū, v̄, µ̄) is feasible for (WD) and the objective values of (NRP) and
(WD) are equal. Moreover, maxu∈U f(x̄, u)+s(x̄|C) = f(x̄, ū)+w̄T x̄+

∑m
j=1 µ̄jgj(x̄, v̄j).

It follows from a weak duality (Theorem 3.1) holds that for any feasible solution
(x̃, ũ, ṽ, w̃, µ̃) for (WD),

f(x̄, ū) + w̄T x̄+

m∑
j=1

µ̄jgj(x̄, v̄j) = max
u∈U

f(x̄, u) + s(x̄|C)

≥ f(x̃, ũ) + w̃T x̃+

m∑
j=1

µ̃jgj(x̃, ṽj).

Hence (x̄, ū, v̄, w̄, µ̄) is a solution of (WD). �

References

[1] D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization,

Oper. Res. 57(2009), 1483-1495.

[2] A. Ben-Tal, A. Nemirovski, Robust-optimization-methodology and applications, Math.
Program., Ser B 92(2002), 453–480.

[3] A. Ben-Tal, A. Nemirovski, A selected topics in robust convex optimization, Math. Pro-

gram., Ser B 112(2008), 125-158.
[4] D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms,

Oper. Res. Lett. 32(2004), 510-516.

[5] A. Ben-Tal, L. E. Ghaoui, A. Nemirovski, Robust optimization, Princeton Series in Ap-
plied Mathematics, 2009.

[6] V. Jeyakumar, G. Li, G. M. Lee, A robust von Neumann minimax theorem for zero-sum

games under bounded payoff uncertainty, Oper. Res. Lett. 39(2011), 109–114.
[7] V. Jeyakumar, G. Li, G. M. Lee, Robust duality for generalized convex programming

problems under data uncertainty, Nonlinear Analysis 75(2012), 1362–1373.
[8] M. H. Kim, Robust duality for generalized invex programming problems, Commun. Ko-

rean Math. Soc. 28(2013), 419-423.

[9] D. Kuroiwa and G. M. Lee, On robust multiobjective optimization, Vietnam J. Math.
40(2012), 305–317.

[10] G. M. Lee and M. H. Kim, On duality theorems for robust optimization problems, Journal

of the Chungcheong Mathematical Society 26(2013), 723–734.



NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS 377

[11] A. Shapiro, D. Dentcheva and A. Ruszczynski, Lectures on Stochastic Programming:
Modeling and Theory, SIAM, Philadelphia, 2009.

Moon Hee Kim

Department of Refrigeration Engineering, Tongmyong University, Busan 608-

711, Korea
E-mail address: mooni@tu.ac.kr


