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ROBUST DUALITY FOR NONSMOOTH

MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Gue Myung Lee* and Moon Hee Kim**

Abstract. In this paper, we consider a nonsmooth multiobjective
robust optimization problem with more than two locally Lipschitz
objective functions and locally Lipschitz constraint functions in the
face of data uncertainty. We prove a nonsmooth sufficient optimal-
ity theorem for a weakly robust efficient solution of the problem.
We formulate a Wolfe type dual problem for the problem, and es-
tablish duality theorems which hold between the problem and its
Wolfe type dual problem.

1. Introduction and preliminaries

Let X be a Banach space, and let functions fi, gi : X → R, i =
1, · · · , p, j = 1, · · · ,m be given. Consider the following multiobjective
optimization problem with inequality constraints:

(MP) Minimize (f1(x), · · · , fp(x))

subject to gj(x) ≤ 0, j = 1, · · · ,m.

This problem in the face of data uncertainty in the constraints can be
written by the multiobjective optimization problem:

(UMP) Minimize (f1(x, u1), · · · , fp(x, up))
subject to gj(x, vj) ≤ 0, j = 1, · · · ,m,

where ui, vj are uncertain parameters, and ui ∈ Ui, vj ∈ Vj for some
sequentially compact topological space Ui and Vj , i = 1, · · · , p, j =
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1, · · · ,m and fi : X×Ui → R, gj : X×Vj → R, i = 1, · · · , p, j = 1, · · · ,m
are functions.

In this paper, we treat the robust approach for (UMP), which is the
worst case approach for (UMP). Now we associate with (UMP) its robust
counterpart:

(RMP) Minimize ( max
u1∈U1

f1(x, u1), · · · , max
up∈Up

fp(x, up))

subject to gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, · · · ,m,

where the uncertain objective functions and constraints are enforced for
every possible valued of the parameters within their prescribed uncer-
tainty sets Ui, i = 1, · · · , p and Vj , j = 1, · · · ,m. The problem (RMP)
can be understood as the robust case (the worst case) of (UMP). So,
optimizing (UMP) with (RMP) can be regarded as the robust approach
(worst approach) for (UMP).

Robust optimization, which has emerged as a powerful deterministic
approach for studying mathematical programming under uncertainty
([1]-[11]).

Kuroiwa and Lee [8, 9] studied scalarizations and optimality theorems
for (RMP) when involved functions are convex.

Recently, Lee and Lee [10] proved nonsmooth optimality theorems for
weakly robust efficient solutions and properly robust efficient solutions
for (RMP).

In this paper, we prove a nonsmooth sufficient optimality theorem for
weakly robust efficient solutions for (RMP). We formulate a Wolfe type
dual problem for (RMP), and establish the weak duality theorem and
the strong duality theorem which hold between (RMP) and its Wolfe
type dual problem. The works in this paper is a continuation of ones in
[10].

Let a function f : X → R be given. We shall suppose that f is locally
Lipschitz, that is, for each x ∈ X, there exist an open neighborhood U
and a constant L > 0 such that for all y and z in U ,

|f(y)− f(z)| ≤ L‖y − z‖.

Definition 1.1. For each d ∈ X, the generalized directional deriva-
tive of f at x in the direction d, denoted f0(x; d), is given by

f0(x; d) = lim suph→0,t→0+

f(x+ h+ td)− f(x+ h)

t
.
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We also denote the usual one-side directional derivative of f at x by
f ′(x; d). Thus

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
,

whenever this limit exists.

In the sequel, X∗ denotes the (continuous) dual space of X and 〈·, ·〉
is the duality pairing between X and X∗. The norm of an element ξ of
X∗, denoted ‖ξ‖∗, is given by

‖ξ‖∗ := sup{〈ξ, d〉 | d ∈ X, ‖d‖ 5 1}.

However, all statements involving a topology on X∗ are with respect to
the weak∗ topology, unless otherwise stated.

Definition 1.2. The generalized gradient of f at x, denoted by
∂f(x), is the (nonempty) set of all ξ in X∗ satisfying the following con-
dition:

f0(x; d) = 〈ξ, d〉 for all d ∈ X.

We summarize some fundamental results in the calculus of generalized
gradients:

(1) ∂f(x) is a nonempty, convex, weak∗ compact subset of X∗.
(2) The function d 7→ f0(x; d) is convex.
(3) For every d in X, one has

f0(x; d) = max{〈ξ, d〉 | ξ ∈ ∂f(x)}.

In 1981, Hanson [4] introduced the invexity of differentiable functions
and established the Kuhn-Tucker sufficient optimality, the weak and
strong duality for a nonlinear optimization problem involving differen-
tiable invex function.

The invexity conception has been extended to the nonsmooth cases
by many authors. In particular, Mishra and Giorgi [12] defined the non-
smooth invexity of Lipschitz functions for the finite dimensional space.

Now we defined the nonsmooth invexity of Lipschitz functions as
follows:

Definition 1.3. Let g : X → R be a locally Lipschitz function. Then
g is invex on X if there exists a function η : X × X → X such that,
∀x, y ∈ X,

g(y)− g(x) = g0(x; η(y, x)).
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Equivalently, ∀x, y ∈ X, ∀ξ ∈ ∂xg(x),

g(y)− g(x) = ξ(η(y, x)).

Let V be a sequentially compact topological space and let g : X×V →
R be a given function. Now, we will assume that the following conditions
hold:

(C1) g(x, v) is upper semicontinuous in (x, v).
(C2) g is locally Lipschitz in x, uniformly for v in V , that is, for each

x ∈ X, there exist and open neighborhood U of x and a constant
L > 0 such that for all y and z in U , and v ∈ V ,

|g(y, v)− g(z, v)| 5 L‖y − z‖.
(C3) g0x(x, v; ·) = g′x(x, v; ·), the derivatives being with respect to x.
(C4) the generalized gradient ∂xg(x, v) with respect to x is weak∗ upper

semicontinuous in (x, v).

We define a function ψ : X → R via

ψ(x) := max{g(x, v) | v ∈ V },
and we observe that our conditions (C1)-(C2) imply that ψ is defined
and finite (with the maximum defining ψ attained) on X.

V (x) := {v ∈ V | g(x, v) = ψ(x)}.
It is easy to see that V (x) is nonempty and closed for each x in X.

The following lemma, which is a nonsmooth version of Danskin’s
theorem [3] for max-functions, makes connection between the functions
ψ′(x; d) and g0(x, v; d).

Lemma 1.4. [11] Under the conditions (C1)-(C4), the usual one-sided
directional derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ0(x; d) = max{g0x(x, v; d) | v ∈ V (x)}
= max{〈ξ, d〉 | ξ ∈ ∂xg(x, v), v ∈ V (x)}.

Lemma 1.5. [11] In addition to the basic conditions (C1)-(C4), sup-
pose that V is convex, and that g(x, ·) is concave on V , for each x ∈ U .
Then the following statements hold:

(i) The set V (x) is convex and sequentially compact.
(ii) The set

∂xg(x, V (x)) := {ξ | ∃v ∈ V (x) such that ξ ∈ ∂xg(x, v)}
is convex and weak∗ compact.

(iii) ∂ψ(x) = {ξ | ∃v ∈ V (x) such that ξ ∈ ∂xg(x, v)}.
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2. Sufficient optimality theorems

Let X be a Banach space. Recall the robust counterpart (RMP) of
(UMP):

(RMP) Minimize ( max
u1∈U1

f1(x, u1), · · · , max
up∈Up

fp(x, up))

subject to gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, · · · ,m.

We assume that fi : X × Ui → R, gj : X × Vj → R, i = 1, · · · , p, j =
1, · · · ,m are locally Lipschitz functions, and that, Ui, i = 1, · · · , p and
Vj , j = 1, · · · ,m are sequentially compact topological spaces.

We recall the set of robust feasible solutions of (UMP):

C := {x ∈ X | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, · · · ,m}.

We say that x̄ ∈ C is called a weakly robust efficient solution of
(RMP) if there does not exist a robust feasible solution x of (RMP)
such that

max
ui∈Ui

fi(x, ui) < max
ui∈Ui

fi(x̄, ui), i = 1, · · · , p.

Define φi(x) := maxui∈Ui fi(x, ui) for each i = 1, · · · , p and ψj(x) :=
maxvj∈Vj gj(x, vj) for each j = 1, · · · ,m. Then if fi and gj satisfy
the conditions (C1) and (C2), φi, ψj : X → R, i = 1, · · · , p and
j = 1, · · · ,m, are locally Lipschitz functions.

Let x ∈ C and let us decompose J := {1, · · · ,m} into two index sets
J = J1(x) ∪ J2(x), where J1(x) = {j ∈ J | ψj(x) = 0} and J2(x) =
J \ J1(x). We put for each i = 1, · · · , p,

Ui(x) := {ui ∈ Ui | fi(x, ui) = φi(x)},

and for each j ∈ J1(x),

Vj(x) := {vj ∈ Vj | gj(x, vj) = ψj(x)}.

Definition 2.1. We define an Extended Nonsmooth Mangasarian-
Fromovitz constraint qualification (ENMFCQ) at x ∈ C as follows:

∃d ∈ X such that g0jx(x, vj ; d) < 0, ∀vj ∈ Vj(x), ∀j ∈ J1(x),

where g0jx(x, vj ; d) denotes the generalized directional derivative of gj
with respect to x.

Now we present a necessary optimality theorem for a weakly robust
efficient solution of (RMP).
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Theorem 2.2. [10] Assume that fi, i = 1, · · · , p and gj , j = 1, · · · ,m
satisfy the conditions (C1)–(C4). Suppose that for each x ∈ X, fi(x, ·), i =
1, · · · , p, are concave on Ui, i = 1, · · · , p and gj(x, ·) are concave on
Vj , j = 1, · · · ,m. Let x∗ ∈ C be a weakly robust efficient solution of
(RMP). Then there exist µi = 0, i = 1, · · · , p, λj = 0, j = 1, · · · ,m, not
all zero, and u∗i ∈ Ui(x

∗), i = 1, · · · , p, v∗j ∈ Vj(x
∗), j = 1, · · · ,m such

that

0 ∈
p∑

i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

λjgj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

Moreover, if we further assume that the Extended Nonsmooth Mangasarian-
Fromovitz constraint qualification (ENMFCQ) holds, then there exist µi =
0, i = 1, · · · , p, not all zero, and u∗i ∈ Ui(x

∗), i = 1, · · · , p, λj = 0 and v∗j ∈
Vj(x

∗), j = 1, · · · ,m such that

0 ∈
p∑

i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

λjgj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

Now we give a sufficient optimality theorem for weakly robust efficient
solutions for (RMP):

Theorem 2.3. Let x∗ be a robust feaible solution of (UMP). Suppose
that there exist µi = 0, i = 1, · · · , p, not all zero, and u∗i ∈ Ui(x

∗), i =
1, · · · , p, λj = 0 and v∗j ∈ Vj(x∗), j = 1, · · · ,m such that

0 ∈
p∑

i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ),

λjgj(x
∗, v∗j ) = 0, j = 1, · · · ,m.

If each fi(·, u∗i ), i = 1, · · · , p and gj(·, v∗j ), j = 1, · · · ,m are invex at x∗ with
respect to the same η, then x∗ is a weakly robust efficient solution of (RMP).

Proof. Let x∗ be a robust feasible solution of (RMP). Suppose that
there exist µi = 0, i = 1, · · · , p, not all zero, and u∗i ∈ Ui(x

∗), i =
1, · · · , p, λj = 0 and v∗j ∈ Vj(x∗), j = 1, · · · ,m such that

0 ∈
p∑

i=1

µi∂xfi(x
∗, u∗i ) +

m∑
j=1

λj∂xgj(x
∗, v∗j ).
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Then there exists ξ∗i ∈ ∂xfi(x∗, u∗i ), i = 1, · · · , p and
ζ∗j ∈ ∂xgj(x∗, v∗j ), j = 1, · · · ,m such that

p∑
i=1

µiξ
∗
i (η(x, x∗)) +

m∑
j=1

λjζ
∗
j (η(x, x∗)) = 0.(2.1)

Suppose that x∗ is not a weakly robust efficient solution of (RMP). Then there
exist a feasible solution x of (RMP) such that

max
ui∈Ui

fi(x, ui) < max
ui∈Ui

fi(x
∗, ui), i = 1, · · · , p.

Then there exist u∗i ∈ Ui(x
∗), i = 1, · · · , p, such that

fi(x, u
∗
i ) < fi(x

∗, u∗i ).

By the invexity of fi(·, u∗i ) at x∗, ξ∗i (η(x, x∗)) < 0. Since µi = 0, i = 1, · · · , p,
not all zero,

∑p
i=1 µiξ

∗
i (η(x, x∗)) < 0.

From (2.1),
∑m

j=1 λjζ
∗
j (η(x, x∗)) > 0. By the invexity of gj(·, v∗j ) at x∗,

λjgj(x, v
∗
j )− λjgj(x∗, v∗j ) > 0, j = 1, · · · ,m.

Hence λjgj(x, v
∗
j ) > λjgj(x

∗, v∗j ), j = 1, · · · ,m. Since λjgj(x
∗, v∗j ) = 0, λjgj(x, v

∗
j ) >

0, j = 1, · · · ,m, which contradicts the fact that λjgj(x, v
∗
j ) 5 0, j = 1, · · · ,m.

Therefore, x∗ is a weakly robust efficient solution of (RMP).

3. Duality theorems

In this section, we establish Wolfe type robust duality theorems which
hold between (RMP) and the following Wolfe type dual problem (WD)
for (RMP).

(WD) Maximize

(f1(y, u1) +
m∑
j=1

λjgj(y, vj), · · · , fp(y, up) +
m∑
j=1

λjgj(y, vj))

subject to

0 ∈
p∑

i=1

µi∂xfi(y, ui) +
m∑
j=1

λj∂xgj(y, vj),

µi = 0,

p∑
i=1

µi = 1, λj = 0,

ui ∈ Ui, vj ∈ Vj , i = 1, · · · , p, j = 1, · · · ,m.

Theorem 3.1. (Weak Duality) Let x be robust feasible solution for
(RMP) and (y, µ, λ) be feasible for (WD). If each fi(·, ui), i = 1, · · · , p
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and gj(·, vj), j = 1, · · · ,m are invex at y with respect to the same η,
then the following does not hold: for all i ∈ {1, · · · , p},

max
ui∈Ui

fi(x, ui) < fi(y, u1) +

m∑
j=1

λjgj(y, vj).

Proof. Let x be any feasible for (RMP) and (y, µ, λ) be any feasible
for (WD). Then there exist µi = 0, i = 1, · · · , p, not all zero, and ui ∈
Ui, i = 1, · · · , p, λj = 0 and vj ∈ Vj , j = 1, · · · ,m such that

0 ∈
p∑

i=1

µi∂xfi(y, ui) +

m∑
j=1

λj∂xgj(y, vj).

Then there exists ξ∗i ∈ ∂xfi(y, ui), i = 1, · · · , p and ζ∗j ∈ ∂xgj(y, vj), j =
1, · · · ,m such that

p∑
i=1

µiξ
∗
i (η(x, y)) +

m∑
j=1

λjζ
∗
j (η(x, y)) = 0.(3.1)

Now suppose that

( max
u1∈U1

f1(x, u1), · · · , max
up∈Up

fp(x, up))

< (f1(y, u1) +

m∑
j=1

λjgj(y, vj), · · · , fp(y, up) +

m∑
j=1

λjgj(y, vj)).

Then

max
ui∈Ui

fi(x, ui) < fi(y, ui) +
m∑
j=1

λjgj(y, vj), i = 1, · · · , p.

Since

fi(x, ui) < fi(y, ui) +

m∑
j=1

λjgj(y, vj), i = 1, · · · , p.

Since gj(x, vj) 5 0, λj = 0, j = 1, · · · ,m, λjgj(x, vj) 5 0,

fi(x, ui) +
m∑
j=1

λjgj(x, vj) < fi(y, ui) +
m∑
j=1

λjgj(y, vj), i = 1, · · · , p.

Since fi(·, ui), i = 1, · · · , p and gj(·, vj). j = 1, · · · ,m are invex,

ξ∗i (η(x, y)) +

m∑
j=1

λjζ
∗
j (η(x, y)) < 0.
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Since µi = 0 and
∑p

i=1 µi = 1,[ p∑
i=1

µiξ
∗
i +

m∑
j=1

λjζ
∗
j

]
(η(x, y)) < 0.

This contradicts the inclusion (3.1).

Theorem 3.2. (Strong Duality) Let x̄ be a solution of (RMP). As-
sume that the Extended Mangasarian-Fromovitz constraint qualification
holds. Then, there exist (ū, v̄, µ̄, λ̄) such that (x̄, ū, v̄, µ̄, λ̄) is feasible for
(WD) and the objective values of (RMP) and (WD) are equal. More-
over, if the weak duality holds, then (x̄, ū, v̄, µ̄, λ̄) is a solution of (WD).

Proof. Since x̄ is a robust solution of (RMP) at which the Extended
Mangasarian-Fromovitz constraint qualification holds, then by Theorem
2.1, there exist µ̄i = 0, i = 1, · · · , p, λ̄j = 0, j = 1, · · · ,m, not all zero,
and ūi ∈ Ui(x̄), i = 1, · · · , p, v̄j ∈ Vj(x̄), j = 1, · · · ,m such that

0 ∈
p∑

i=1

µ̄i∂xfi(x̄, ūi) +

m∑
j=1

λ̄j∂xgj(x̄, v̄j),

λ̄jgj(x̄, v̄j) = 0, j = 1, · · · ,m.

Thus (x̄, ū, v̄, µ̄, λ̄) is feasible for (WD) and the objective values of (RMP)
and (WD) are equal. Moreover, maxūi∈Ui

fi(x̄, ui) = fi(x̄, ūi) = fi(x̄, ūi) +∑j
j=1 λ̄jgj(x̄, v̄j). It follows from weak duality (Theorem 3.1) that for any

feasible solution (x̃, ũ, ṽ, µ̃, λ̃) for (WD), the following does not hold: for all
i ∈ {1, · · · , p},

fi(x̄, ūi) +

j∑
j=1

λ̄jgj(x̄, v̄j) < fi(x̃, ũi) +

j∑
j=1

λ̃jgj(x̃, ṽj).

Hence (x̄, ū, v̄, µ̄, λ̄) is a solution of (WD).
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