• Title/Summary/Keyword: optimality criterion

Search Result 58, Processing Time 0.03 seconds

Constrained Optimality of an M/G/1 Queueing System

  • Kim, Dong-Jin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.203-206
    • /
    • 2003
  • This paper studies constrained optimization of an M/G/1 queue with a server that can be switched on and off. One criterion is an average number of customers in the system and another criterion is an average operating cost per unit time, where operating costs consist of switching and running costs. With the help of queueing theory, we solve the problems of optimization of one of these criteria under a constraint for another one.

  • PDF

Augmented D-Optimal Design for Effective Response Surface Modeling and Optimization

  • Kim, Min-Soo;Hong, Kyung-Jin;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • For effective response surface modeling during sequential approximate optimization (SAO), the normalized and the augmented D-optimality criteria are presented. The normalized D-optimality criterion uses the normalized Fisher information matrix by its diagonal terms in order to obtain a balance among the linear-order and higher-order terms. Then, it is augmented to directly include other experimental designs or the pre-sampled designs. This augmentation enables the trust region managed sequential approximate optimization to directly use the pre-sampled designs in the overlapped trust regions in constructing the new response surface models. In order to show the effectiveness of the normalized and the augmented D-optimality criteria, following two comparisons are performed. First, the information surface of the normalized D-optimal design is compared with those of the original D-optimal design. Second, a trust-region managed sequential approximate optimizer having three D-optimal designs is developed and three design problems are solved. These comparisons show that the normalized D-optimal design gives more rotatable designs than the original D-optimal design, and the augmented D-optimal design can reduce the number of analyses by 30% - 40% than the original D-optimal design.

Dominance, Potential Optimality, and Strict Preference Information in Multiple Criteria Decision Making

  • Park, Kyung-Sam;Shin, Dong-Eun
    • Management Science and Financial Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-84
    • /
    • 2011
  • The ordinary multiple criteria decision making (MCDM) approach requires two types of input, alternative values and criterion weights, and employs two schemes of alternative prioritization, dominance and potential optimality. This paper allows for incomplete information on both types of input and gives rise to the dominance relationships and potential optimality of alternatives. Unlike the earlier studies, we emphasize that incomplete information frequently takes the form of strict inequalities, such as strict orders and strict bounds, rather than weak inequalities. Then the issues of rising importance include: (1) The standard mathematical programming approach to prioritize alternatives cannot be used directly, because the feasible region for the permissible decision parameters becomes an open set. (2) We show that the earlier methods replacing the strict inequalities with weak ones, by employing a small positive number or zeroes, which closes the feasible set, may cause a serious problem and yield unacceptable prioritization results. Therefore, we address these important issues and develop a useful and simple method, without selecting any small value for the strict preference information. Given strict information on both types of decision parameters, we first construct a nonlinear program, transform it into a linear programming equivalent, and finally solve it via a two-stage method. An application is also demonstrated herein.

Composite Design Criteria : Model and Variance (복합실험기준의 설정: 모형과 분산구조)

  • 김영일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.393-405
    • /
    • 2000
  • Box and Draper( 19(5) listed some properties of a design that should be considered in design selection. But it is impossible that one design criterion from optimal experimental design theory reflects many potential objectives of an experiment, because the theory was originally based on the underlying model and its strict assumption about the error structure. Therefore, when it is neces::;ary to implement multi-objective experimental design. it is common practice to balance out the several optimal design criteria so that each design criterion involved benefits in terms of its relative "high" efficiency. In this study, we proposed several composite design criteria taking the case of heteroscedastic model. WVhen the heteroscedasticity is present in the model. the well known equivalence theorem between 1)- and C-optimality no longer exists and furthermore their design characteristics are sometimes drastically different. We introduced three different design criteria for this purpose: constrained design, combined design, and minimax design criteria. While the first two methods do reflect the prior belief of experimenter, the last one does not take it into account. which is sometimes desirable. Also we extended this method to the case when there are uncertainties concerning the error structure in the model. A simple algorithm and concluslOn follow.On follow.

  • PDF

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Topology Optimization of Element Removal Method Using Stress Density (응력량을 이용한 요소제거법의 위상최적화)

  • 임오강;이진식;김창식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Topology optimization has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes. Traditional topology optimization has been using homogenization method and optimality criteria method. homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time. In one way to solve this problem, element removal method using the criterion of an average stress is presented. As the result of examples, it is certified that convergency time is very reduced.

Multi-objective topology and geometry optimization of statically determinate beams

  • Kozikowska, Agata
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.367-380
    • /
    • 2019
  • The paper concerns topology and geometry optimization of statically determinate beams with arbitrary number of supports. The optimization problem is treated as a bi-criteria one, with the objectives of minimizing the absolute maximum bending moment and the maximum deflection for a uniform gravity load. The problem is formulated and solved using the Pareto optimality concept and the lexicographic ordering of the objectives. The non-dominated sorting genetic algorithm NSGA-II and the local search method are used for the optimization in the Pareto sense, whereas the genetic algorithm and the exhaustive search method for the lexicographic optimization. Trade-offs between objectives are examined and sets of Pareto-optimal solutions are provided for different topologies. Lexicographically optimal beams are found assuming that the maximum moment is a more important criterion. Exact formulas for locations and values of the maximum deflection are given for all lexicographically optimal beams of any topology and any number of supports. Topologies with lexicographically optimal geometries are classified into equivalence classes, and specific features of these classes are discussed. A qualitative principle of the division of topologies equivalent in terms of the maximum moment into topologies better and worse in terms of the maximum deflection is found.

Robust Designs of the Second Order Response Surface Model in a Mixture (2차 혼합물 반응표면 모형에서의 강건한 실험 설계)

  • Lim, Yong-Bin
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.267-280
    • /
    • 2007
  • Various single-valued design optimality criteria such as D-, G-, and V-optimality are used often in constructing optimal experimental designs for mixture experiments in a constrained region R where lower and upper bound constraints are imposed on the ingredients proportions. Even though they are optimal in the strict sense of particular optimality criterion used, it is known that their performance is unsatisfactory with respect to the prediction capability over a constrained region. (Vining et at., 1993; Khuri et at., 1999) We assume the quadratic polynomial model as the mixture response surface model and are interested in finding efficient designs in the constrained design space for a mixture. In this paper, we make an expanded list of candidate design points by adding interior points to the extreme vertices, edge midpoints, constrained face centroids and the overall centroid. Then, we want to propose a robust design with respect to D-optimality, G-optimality, V-optimality and distance-based U-optimality. Comparing scaled prediction variance quantile plots (SPVQP) of robust designs with that of recommended designs in Khuri et al. (1999) and Vining et al. (1993) in the well-known examples of a four-component fertilizer experiment as well as McLean and Anderson's Railroad Flare Experiment, robust designs turned out to be superior to those recommended designs.

Optimal replacement strategy under repair warranty with age-dependent minimal repair cost

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, we suggest the optimal replacement policy following the expiration of repair warranty when the cost of minimal repair depends on the age of system. To do so, we first explain the replacement model under repair warranty. And then the optimal replacement policy following the expiration of repair warranty is discussed from the user's point of view. The criterion used to determine the optimality of the replacement model is the expected cost rate per unit time, which is obtained from the expected cycle length and the expected total cost for our replacement model. The numerical examples are given for illustrative purpose.

  • PDF

ADAPTIVE OPTIMAL OUTPUT FEEDBACK CONTROL

  • Sin, Hyeong-Cheol;Byeon, Jeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1981.07a
    • /
    • pp.146-153
    • /
    • 1981
  • A practical and robust control scheme is suggested for MIMO discrete time processes with real simple poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, may be successfully applicable to structured dynamic controllers for plants whose parameters are slowly time-varying. The identification of the process parameters is under-taken in ARMA form and the optimization of the feedback gain matrix is performed in the state space representation with regard to a standard quadratic criterion.

  • PDF