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Abstract

This paper studies constrained optimization of an M/G/1 queue with a server
that can be switched on and off. One criterion is an average number of customers
in the system and another criterion is an average operating cost per unit time,
where operating costs consist of switching and running costs. With the help of
queueing theory, we solve the problems of optimization of one of these criteria
under a constraint for another one.

1. Introduction

This paper studies constrained optimization of an M/G/1 queuing system with a
removable server. One criterion is the average number of customers in the system, and the
other criterion is the average operating cost per unit time. The operating costs consist of
switching costs and running costs.

Queuing systems with removable servers model service and production systems without
inventories, with backorders, and with stochastic demand. For the M/G/1 model considered
in this paper, orders arrive in accordance with a Poisson process, they are served
sequentially, and processing times are iid. random variables. The question is when the
system should start and finish production(or service) if set- up or shut-down costs are non
Z€ro.

Single server queues with removable servers have been studied by many researchers
such as Yadin and Naor, Heyman, Bell and many others, where they deal mainly with the
optimization of either the average cost per unit time or the expected total discounted cost.
Yadin and Naor introduced a notion of the N-policy implying that the server is on when
the queue size reaches the number N and off when the system becomes empty.

For N=12.. and for p€(0,1], we say that the policy is a <p, N>policy if it prescribes
the following actions: (i) Switch the server off when the system becomes empty, (ii)
Switch the nonoperating server on if there are more than N customers in the system, (iii)
If the server is off and the number of customers in the system becomes N, switch the
server on with probability p and leave it off with probability (1-p), and (iv) Do not switch
the server at other epochs.

We say that the policy is an <N, p>policy if it prescribes the following actions: (i)
Switch the nonoperating server on when there are N customers in the system, (ii) When
the system becomes empty, switch the server off with probability p and leave it on with
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probability (1-p), and (iii) Do not switch the server at other epochs. The essential
differences between these two policies is that for a <p, N>policy a decision maker selects
actions randomly at an arrival epoch of an Nth customer who sees the server off, whereas
for an <N, p>policy a decision maker chooses actions randomly at a service completion
epoch when the system becomes empty.

We show that either the <p, N> policy or <N, p> policy is optimal for the constrained
problem and find the explicit formulas for the optimal N and p.

The disadvantage of the above policies to apply to the real life situations is due to the
fact that they are randomized which is a typical case for constrained sequential decision
problems. To get around this difficulty of randomized policies we will construct equivalent
non randomized policies, which are more practical to implement in applications.

2. Problem Formulation

We consider an M/G/1 queue. The Poisson arrival process has intensity A, and service

times are iid. non negative random variables with distribution function G, which has a
finite and positive mean 1/# and finite variance ¢?2 . The system utilization factor is
o=Mp and is always assumed to be less than unity. Let L be the average number of
customers in an M/G/1 queue which is by Pollaczek-Khintchin formula,
L= p+p? (6% p? +1)/[2(1-p)]. The cost structure is the operating costs, which contain
the start-up cost C, , the shut-down cost C; , and the running costs D; per unit time
when the server is on and D, per unit time when the server is off. Without loss of
generosity, we assume that D; > D, and C, + C; >0.

The server may be either on or off. If the server is off, it may be switched on at arrival
epochs and if the server is on, it may be switched off at service completion epochs.

For a policy =, let the corresponding average number of customers in the system be
L(z) and the average operating cost per unit time be C(x). We solve the following
optimization problems: (1) Minimization of the average operating cost per unit time under
the constraint that the average number of customers in the system does not exceed a given
level and (2) Minimization of the average number of customers in the system under the
condition that the average operating cost per unit time does not exceed a given level.

Now, we have the following problems:

Problem 1 : Minimize C(x) subject to L(7) < «
Problem 2 : Minimize L(xz) subject to C(x) < B, where eand B are given numbers.

3. Optimal policies for constrained problems

If Problems described in section 2 is feasible then there exists an optimal policy that is
either <p, N>, or <M, p>, or O-policy, where O-policy is to keep the server on all the
time. Let D(N)=C(N+1)+ R, /(N+1), where R, = ( C; + C; A (1-p) and

M=min{iDG) <D, , i=2,3,...}.

Theoreml: Suppose that Problem 1 is given. If a <L, then the problem 1 is infeasible.
If a =L, then the problem is feasible and the optimal policy has the following form:
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(i) If either D, = C(), or D; £ C(1) and @ =2L(M), then the <p, N>policy is optimal
with N=[2( e -L)+1] and p=(N+1){N+2(L- a )}/{2(N+L- @)}, where [x] is an integer part of X.
(ii) If D, < C(1) and L <a <L(M), then the <M, p>policy is optimal, where

p=2( & -L)/{(M-1)(M-2( a -L))}.

Gi)If D, < C(1) and @=L, then the O-policy is optimal.

Theorem2: Suppose that Problem 2 is given. If 8<D; , then the problem is infeasible. If

D, <£8<(-p)D;, +pD; , then the policy x(*) to keep the server off at all time is

optimal with L{z(x))=c0, If A>(1-p)D; +pD, , then the problem is feasible and the

optimal policy has the following form:

(i) If either D; =C(1), or D; <C(1) and B <C(M), then the <p, N>policy is optimal with
N=[R; /8, ] and p=(N+1)- R, /B, , where R, = ( C; + C; )A (1-p)and

Bi =B-{(1-p)D; +oD, }

Gi) If D; =C() and CIM)< B < D, , then the <M, p>policy is optimal where

D=(B| - R )/{Rz -R, ‘/91 (M—l)}, and Rx =(D1 -D, )(1".0).

Gi) If Dy =C(1) and B =D, , then the O-policy is optimal.

4. Equivalent non randomized optimal policies

In this section we will describe two non randomized policies and show that they are
equivalent to the above optimal policies of theorems 2 and 3.

For some t=0, [t, N] policy prescribes switching the nonoperating server on either when
time t passed after the queue reaches the size N or when the queue reaches the size (N+1),
whatever occurs first, and the server should be switched off when the system becomes
empty. At all other epoches, the state of the server should remain the same.

An [N, t] policy prescribes switching the server off in t units of time after the system
becomes empty, if there is no arrival during these t units of time, and the nonoperating
server should be switched on when the number of customers in the system becomes N. If
a customer arrives within t units of time after the system becomes empty, the server
remains on and it serves the customers until the busy period ends.

Theorem 3: For N=1,2,... and p<€(0,1], we set t=(-1/A)In p. Then
(i) <p, N> policy and the [t, N] policy have the same performance
(ii) <N, p> policy and the [N, t] policy have the same performance
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