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Abstract
This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample

size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides
the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic
approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion
of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to
measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the
MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample
size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the
model.
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1. Introduction

The validity of an experiment depends on the appropriate experimental design that can be elucidated
by using the theory of optimum experimental design. A convenient framework to provide the ideal
design is to select a set of control variables so that it leads to the minimum of the variance of parameter
estimator. There is an increasing number of experiments that a linear model cannot adequately indicate
the fundamental features of the data.

Observational studies involve many situations in which the outcome of an experiment is countable.
An appropriate model to describe such data is the Poisson regression model, that can be found in
McCullagh and Nelder (1989). Unfortunately, there are difficulties with the optimal design problem
in such models. These difficulties are caused by likelihood equations that are usually the nonlinear
functions of the parameters. Therefore, the maximum likelihood estimator (MLE) cannot be solved
analytically. Under such circumstances, numerical methods such as Fisher scoring are employed
to obtain MLE (Searle et al., 1992). Due to the lack of a closed form for MLE, variance-covariance
matrix cannot be directly calculated. However, MLE has substantial asymptotic properties despite this
limitation. According to the large-sample theory, MLE is asymptotically unbiased and the variance of
MLE is approximated by the inverse of the Fisher information matrix. Optimal designs for Poisson
regression models have been done by Wang et al. (2006a, b), Russell et al. (2009b). In these literature
references, optimal designs are obtained based on the maximization of a convex function of the Fisher
information matrix, which follow the asymptotic theory. An important question rising here is, whether
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the asymptotic properties establish when the sample size is not large enough. Numerical results show
that the asymptotic approximations do not hold for small size experiments. Therefore, the mentioned
problem may affect the accuracy of the obtained optimal designs.

For non-linear models, the small-sample differential-geometric approach based on the least squares
estimator is deemed to improve the experiment conclusions (Pronzato and Pazman, 2013). Russell et
al. (2009a) considered a locally optimal design for the simple logistic regression model in small
size experiments. They used the maximum penalized likelihood, which has been studied by Firth
(1993), for estimation of parameters and obtained locally optimal designs for two support points of
the designs. Poursina and Talebi (2013) proposed a modified D-optimality criterion based on the
Bhattacharyya lower bound for two parameters simple logistic model. They presented an intuitive
proof and demonstrated that modified optimal designs are more efficient than the previous optimal de-
signs. Khuri et al. (2006) derived the mean square error (MSE) for the linear predictor, and consider
optimal design for the generalized linear models (GLMs). Mehr Mansour and Niaparast (2019) have
also shown a numerical study on optimal designs for small sample size in logistic regression model.

In the present work, we provide the discussion of the higher-order asymptotic expansion of the
bias of the MLE for the Poisson regression model. In order to obtain accurate results in small size
experiments, it is preferable that the variance and the bias are considered together to obtain optimal
designs (Box and Draper, 1959). To fulfil this, we primarily introduce the Poisson regression model
and review the asymptotic expansion of MLE for this model. We then discuss the bias of MLE for
the Poisson regression model and obtain the MSE by using the second-order expansion of MLE. In
Section 3, we define DM-optimality criterion, and then study optimal designs for the special cases of
the Poisson regression model based on the minimization of the MSE.

2. Poisson regression model

The main assumption in the linear regression is that the response variable is normally distributed.
There are numerous conditions in which outcomes have non-normal distribution, but the random
response is a member of the exponential family. Nelder and Wedderburn (1972) established the GLMs
to describe such data. The Poisson regression model is a special case of GLMs used to model count
data where the response variable is specified by the Poisson distribution. Some applications of this
model in medicine, social sciences and toxicology have been studied, for example see Coxe et al.
(2009) and Cameron and Trivedi (2013).

Suppose that Yi’s are independent random variables from Poisson distribution which assume that
the logarithm of their means can be modelled by a linear combination of unknown parameters, i.e.

log(µi) = fT (xi)β, i = 1, . . . , n,

where βT = (β1, . . . , βp) is the vector of unknown parameters, µi = µi(xi,β) is the mean of Yi and
fT (xi) = ( f1(xi), . . . , fp(xi)) is the vector of known regression functions at explanatory variables, xi,
that are the same for all individuals.

This model has been widely studied in literature, for example see McCullagh and Nelder (1989)
and Cameron and Trivedi (2013).
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2.1. Maximum likelihood estimator

For the Poisson regression model, the log likelihood can be written as

L(β) =
n∑

i=1

[
yifT (xi)β − efT (xi)β − log(yi!)

]
,

and

l =
∂L(β)
∂β

=

n∑
i=1

[
yif(xi) − f(xi)efT (xi)β

]
.

The score function to estimate the Poisson regression parameters is completely non-linear; therefore,
the MLE of parameters cannot be obtained in a closed form. This problem causes a difficulty for
making inference based on the maximum likelihood estimation. The common approach is to use the
asymptotic approximation of the score function, the derivative of the log-likelihood function, that
indicates sensitive a likelihood function with respect to parameters.

To denote the different orders of derivatives of the log-likelihood function, we apply the following
notations.

lr =
∂L(β)
∂βr

=

n∑
i=1

(
− fr(xi)efT (xi)β + yi fr(xi)

)
,

Lrs =
∂2L(β)
∂βr∂βs

=

n∑
i=1

(
− fr(xi) fs(xi)efT (xi)β

)
,

Lrst =
∂3L(β)
∂βr∂βs∂βt

=

n∑
i=1

(
− fr(xi) fs(xi) ft(xi)efT (xi)β

)
.

We also indicate the expectation of the above expressions with

λrs = E(Lrs), λrst = E(Lrst).

The Taylor expansion of the rth element of the score function, l̂r = lr(β̂), about β is

l̂r = lr +
∑

s

Lrs

(
β̂s − βs

)
+

1
2

∑
s,t

Lrst

(
β̂s − βs

) (
β̂t − βt

)
+ · · · . (2.1)

Then Equation (2.1) is inverted to obtain an asymptotic expansion for (β̂r −βr). Therefore, asymptotic
expansion for (β̂r − βr) can be written as(

β̂r − βr

)
= −

∑
s

Lrsls −
1
2

∑
s,t

arstlslt +
∑
s,t,u

LrsLtuHstlu + OP

(
n−

3
2

)
, (2.2)

where, arst =
∑

g,h,i LrgLshLtiLghi, Hst = Lst − λst and {Lrs}pr,s=1 is the inverse matrix of {Lrs}pr,s=1 (e.g.,
for example Lawley (1956)).

The bias of β̂r, r = 1, . . . , p, can be represented as follow,

bias
(
β̂r

)
=

1
2

∑
i, j,h

irii jhλi jh, (2.3)
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Figure 1: (a): |bias(β̂0)| when β1 = −1; (b): |bias(β̂1)| when β0 = 1.

where, {irs}pr,s=1 is the inverse matrix of the Fisher information matrix, I(β) = {−λrs}pr,s=1 (see for
example Barndorff-Nielsen and Cox (1994, p.150)).

It can be obtained from Equation (2.2) that the above bias, called the second order bias, is of order
O(n−3/2). Whereas according to the large sample theory, the first order bias, which is based on the first
term of right side of Equation (2.2), tends to zero (Lehmann, 1999).

To illustrate the influence of the sample size on the bias of β, we now consider the following
simulated example.

Example 1. Consider a simple Poisson regression model, where the response mean is described in
terms of an explanatory variable

µi = eβ0+β1 xi , i = 1, . . . , n.

Furthermore, let xi’s take values {0, 2}. For the purpose of illustration, we have simulated a data set of
the simple Poisson regression model, so that half of the observations is taken at x = 0 and the other
half at x = 2. The number of observations is set in sizes n = 10, 20, 50, 100, 1000. The number of
simulations is s = 1000 in each case.

In each replication, we fit the simple Poisson model and use the simulated data and the explanatory
variables to compute the average bias of the parameter estimates for each combination of (n,β) defined
as

bias
(
β̂r

)
=

1
s

s∑
j=1

(
β̂

j
r − βr

)
,

where β̂ j
r is the estimator of βr for jth replication. Figure 1 shows the simulated results.

Figure 1(a) reports the absolute value of bias(β̂0) as a function of β0 with the assumption that
β1 = −1. For any fixed value of β0, the absolute of bias(β̂0) is a decreasing function of n. The plots in
Figure 1(a) demonstrate that the absolute of bias(β̂0) tends to zero when β0 is rising.

Figure 1(b) shows the absolute value of the bias of β̂1 as a function of β1, when β0 = 1. Similar
to Figure 1(a), it is observed that the absolute value of bias(β̂1) is a decreasing function of n specially
for small value of β1.
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Table 1: The bias for the simple Poisson model

n
10 16 20 30 50

bias
(
β̂0

) Simulated bias −0.036 −0.023 −0.021 −0.001 −0.009
Second order bias −0.037 −0.023 −0.018 −0.012 −0.007

bias
(
β̂1

) Simulated bias −1.481 −0.536 −0.291 −0.072 −0.025
Second order bias −0.118 −0.073 −0.059 −0.039 −0.024

As a general conclusion, the simulated results have indicated that the absolute value of the bias of
MLE of parameters is a decreasing function of distribution means. It is also shown that the bias of
MLE is not zero in small sample experiments. While, the first order bias is equal to zero. Therefore,
it is useful to compare the simulated bias with the second order bias which is expressed in Equation
(2.3). Note that the true values of the parameters are β0 = 1 and β1 = −1.

Table 1 shows that the second order bias is closer to the simulated bias and is a better approxima-
tion for computation bias. Therefore, we apply Equation (2.2) to inference about MLE.

2.2. Mean square error

The MSE is a useful tool to measure the difference between the estimator and the true value of the
parameters. The MSE expresses the quality of an estimator, β̂, and is defined as follows,

MSE
(
β̂
)
= E

(
β̂ − β

) (
β̂ − β

)T

= Var
(
β̂
)
+ bias

(
β̂
)

biasT
(
β̂
)
,

where MSE(β̂) is a symmetric and positive semi-definite matrix. The MSE(β̂) incorporates both the
variance of the estimator and its bias.

Note that if we apply the first order of the Taylor expansion of the score function, Equation (2.1),
or we ignore the second term of right side of Equation (2.2), then the bias of β tends to zero. The
MSE(β̂) will be equal to I−1(β) asymptotically.

In the following theorem, we obtain MSE(β̂) for the Poisson regression model.

Theorem 1. Consider a Poisson regression model with canonical link function. The MSE for the
MLE of the vector of parameters can be represented as

MSE
(
β̂
)
≃ I−1(β) − 1

2
I−1(β)FT WU(2)WFI−1(β)

+
1
4

I−1(β)FT WU(2)WU(2)WFI−1(β)

+
1
4

I−1(β)FT WDUJDUWFI−1(β), (2.4)

where W = diag{µi}ni=1 is a diagonal matrix of means, F = {f(x1), . . . , f(xn)}T is the design matrix,
I(β) = FT WF , U = FI−1(β)FT , U(2) = {u2

i j}ni, j=1, DU = diag{u11, . . . , unn} and J is a n × n matrix of
unit elements.

The proof of Theorem 1 is given in Appendix A.
Khuri et al. (2006) derive MSE for the linear predictor using the asymptotic variance and the

second order bias, while we directly obtain the MSE of the second order expansions of the MLE for
the vector estimators.
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3. DM-optimal design

Optimal design is to provide the best estimation of parameters based on specific design criterion. Most
optimal criteria are based on the variance of the estimator of parameters. For the Poisson regression
model, Wang et al. (2006a, b) conducted extensive work on optimal design based on a convex function
of the Fisher information matrix. However, for small size experiments, the Fisher information matrix
may not be a trustworthy approximation to obtain the optimal designs. Therefore, we propose to
use MSE to obtain optimal design for small size experiments due better accuracy. Suppose that ξ ={

x1 · · · xr
n1 · · · nr

}
is an exact design where xi’s are points of design and ni is the number of observations

which are taken at xi,
∑r

i=1 ni = n. The design ξ∗ is better than the design ξ, if MSE(β̂ξ) −MSE(β̂ξ∗)
is a non-negative definite matrix. Unfortunately, it is not possible to solve the above optimization
problem. Therefore, the design of experiments is selected so that some real functions of the MSE of
estimators are minimized. The most popular approach is based on the determinant of the MSE(β̂ξ).
Therefore, we define a new optimality criterion as follows,

Definition 1. A design ξ∗ is said to be DM-optimal in the class of designs Ξ if

log det
(
MSE

(
β̂ξ∗

))
≤ log det

(
MSE

(
β̂ξ

))
∀ξ ∈ Ξ, (3.1)

where D and M are abbreviation of the determinant and the MSE.

This criterion is different of the D-optimality criterion. DM-optimality criterion is based on the
determinant of the MSE whereas D-optimality criterion is based on the determinant of the Fisher
information matrix.

There are two essential problems: First, MSE(β̂ξ) depends on the unknown parameters through
response mean, and therefore, the DM-optimality criterion depends on the vector of parameters, β.
Whereas the exact values of β are unknown in practice. We consider the locally DM-optimal design.
Second, MSE(β̂ξ) relies on the sample size. It means that the sample size affects the DM-optimal
design. MSE(β̂ξ) is based on the more accurate approximation of MLE; therefore, it is expected that
DM-optimal designs are more efficient for small size experiments.

For any ξ, there exists a value of the det(MSE(β̂ξ)). We need an optimization method to find the
design ξ∗ that minimize log det(MSE(β̂ξ)). Here, we have a discrete optimization problem which is
difficult to find a solution for this problem. An approach is to consider all possible combinations of
ni’s to obtain DM-optimal design. We can use also approximate designs to guess the optimum number
of trials at any point of design instead of this calculation. Approximate designs ignore the constraint
that the number of observations must be an integer at any point of design. These results are then
employed to find DM-optimal designs based on the number of trials at any point of design.

Optimization classical methods often are known as local optimization since they derive the dif-
ferent results with different starting points. Therefore in this paper, we apply a hybrid method which
uses of two optimality algorithm to obtain the exact global optimal point.

First a genetic algorithm (GA) is used to find near point to global optimal point (Chen and Ye,
2009). The GA is a global optimization algorithm based on the principles of natural selection and
genetics. This process starts with a population of individuals, which serve as the first generation to
solve above optimization problem. Then selection, crossover and mutation operations are employed
to produce the next generation. It is repeated until a sufficiently large number of generations have
passed without any improvement in the value of the function that we want to optimize. We use the
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second optimization due to the constraints of GA that, do not guarantee the exact global optimum
despite resulting in a near global optimum.

Second, a local optimality algorithm is employed to achieve the global optimal point using the
obtained point in GA as the starting point. We use of the sequential quadratic programming (SQP)
method work out in “fmincon” function at MATLAB program (Fletcher and Powell, 1963).

In this paper, we consider two special cases of the Poisson regression model. Equations (3.2) and
(3.3) define the mean function for simple model and quadratic model, respectively,

µi = exp (β0 + β1xi) , (3.2)

µi = exp
(
β0 + β1xi + β2x2

i

)
. (3.3)

In most applications of this model, especially in toxicity studies, it is assumed that the design
region is the non-negative subset of real numbers, χ = [h, g] where h is a non-negative real number
and g > h (Wang et al., 2006a). In this study, we suppose that χ = [0,∞]. Without loss of generality,
we consider a special case, where µi is assumed to be a decreasing function of xi. We define canonical
mean µ̃i = µi/µmax, where µmax is the maximum value of µi = µi(xi,β), which is achieved in the lower
bound of design region. It is clear that µ̃i will be in [0, 1]. In this paper, we adopt a design space in
terms of µ̃i’s rather than xi’s. According to the monotone relation between µ̃i and xi, we can consider
designs based on both, equivalently. All the designs in this paper are derived under this assumption;
however, they can be easily generalized to situations that µi is an increasing function of xi.

3.1. Locally DM-optimal design for the simple model

In this section, we consider a simple Poisson regression model with mean µi, which has been specified
in (3.2). We are also restricted in design space, Ξ, to saturated designs or designs with two support
points, i.e., ξ =

{
µ̃1 µ̃2
n1 n2

}
. Note that µ̃i = eβ1 xi or equivalently xi = (1/β1) log(µ̃i). The following theorem

obtains MSE(β̂ξ) for this model.

Theorem 2. For a simple Poisson regression model, MSE(β̂ξ) can be represented as

MSE
(
β̂ξ

)
≃ 1

a

(
m11 m12
m12 m22

)
,

where a = (log(µ̃1) − log(µ̃2))2e3β0 n3
1n3

2µ̃
3
1µ̃

3
2,

m11 = e2β0 n2
1n2

2µ̃
2
1µ̃

2
2

∑
niµ̃i log2(µ̃i) − 0.25eβ0 n1n2µ̃1µ̃2

∑
n2

i µ̃
2
i log2(µ̃i)

+ 0.25
∑

n3
i µ̃

3
i log2(µ̃i) − 0.5eβ0 n2

1n2
2µ̃

2
1µ̃

2
2 log(µ̃1) log(µ̃2),

m12 = −β1e2β0 n2
1n2

2µ̃
2
1µ̃

2
2

∑
niµ̃i log(µ̃i) + 0.25β1eβ0 n1n2µ̃1µ̃2

∑
n2

i µ̃
2
i log(µ̃i)

− 0.25β1

∑
n3

i µ̃
3
i log(µ̃i) + 0.25eβ0 n2

1n2
2µ̃

2
1µ̃

2
2(log(µ̃1) + log(µ̃2)),

m22 = β
2
1e2β0 n2

1n2
2µ̃

2
1µ̃

2
2

∑
niµ̃i − 0.25β2

1eβ0 n1n2µ̃1µ̃2

∑
n2

i µ̃
2
i

+ 0.25β2
1

∑
n3

i µ̃
3
i − 0.5β2

1eβ0 n2
1n2

2µ̃
2
1µ̃

2
2.

Proof: For any ξ =
{
µ̃1 µ̃2
n1 n2

}
, we have Fξ =

(
1 1
β1

log(µ̃1)

1 1
β1

log(µ̃2)

)
and Wξ =

(
n1µ1 0

0 n2

)
which are design matrix
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Table 2: DM-optimal design for the simple model, n2 = n − n1

n β0 = 0.1, β1 = −1 β0 = 0.5, β1 = −1 β0 = 1, β1 = −1
n1 µ̃1 µ̃2 n1 µ̃1 µ̃2 n1 µ̃1 µ̃2

8 5 0.1705 1 4 0.1669 1 4 0.1402 1
10 6 0.1607 1 5 0.1532 1 5 0.1328 1
15 8 0.1483 1 8 0.1388 1 8 0.1270 1
20 10 0.1396 1 10 0.1286 1 10 0.1249 1
30 15 0.1285 1 15 0.1250 1 15 0.1262 1
50 25 0.1249 1 25 0.1262 1 25 0.1290 1
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Figure 2: DMeff for DM-optimal design in the simple model: (a) β0 = 0.1; (b) β0 = 0.5; (c) β0 = 1.

and diagonal matrix of means corresponding to design ξ, respectively. Then

I(β) =
eβ0

β2
1

(
β2

1
∑

niµ̃i β1
∑

niµ̃i log(µ̃i)
β1

∑
niµ̃i log(µ̃i)

∑
niµ̃i log2(µ̃i)

)
,

U =
1

eβ0

 1
n1µ̃1

0
0 1

n2µ̃2

 .
Replacing the above matrices in Equation (2.4), and then straightforward calculation leads to the
results. �

We have assumed that µi is a decreasing function of xi. xi ∈ [0,∞]; therefore, this implies that
β1 < 0 for simple model in (3.2). Using the Theorem 2 and applying hybrid method, the results for
DM-optimal design are obtained for some representative values of parameters in Table 2.

DM-optimal design optimizes the determinant of MSE(β̂ξ); therefore, it is beneficent that we
compare the accuracy of DM-optimal design, ξ∗, with D-optimal design, ξ+, that maximizes the de-
terminant of I(β). Therefore, we define DMeff criterion as follows,

DMeff =
det

(
MSE

(
β̂ξ∗

))
det

(
MSE

(
β̂ξ+

)) . (3.4)

Figure 2 shows DMeff of obtained designs in Table 2.
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Table 3: DM-optimal design for the quadratic model, n3 = n − n1 − n2

n β0 = 1, β1 = −1, β2 = −1 β0 = 2, β1 = −1, β2 = −1
n1 n2 µ̃1 µ̃2 µ̃3 n1 n2 µ̃1 µ̃2 µ̃3

8 4 2 0.0943 0.5416 1 3 2 0.0546 0.5079 1
10 4 3 0.0800 0.5303 1 4 3 0.0478 0.5017 1
15 6 4 0.0639 0.5163 1 5 5 0.0438 0.4983 1
20 8 6 0.0551 0.5088 1 7 6 0.0394 0.4934 1
30 10 10 0.0497 0.5044 1 10 10 0.0371 0.4911 1
50 17 16 0.0407 0.4948 1 16 17 0.0365 0.4907 1

n β0 = 1, β1 = −2, β2 = −1 β0 = 1, β1 = −1, β2 = −2
n1 n2 µ̃1 µ̃2 µ̃3 n1 n2 µ̃1 µ̃2 µ̃3

8 4 2 0.0694 0.4571 1 3 2 0.0995 0.5760 1
10 4 3 0.0697 0.4576 1 4 3 0.0848 0.5652 1
15 6 4 0.0547 0.5163 1 5 5 0.0754 0.5560 1
20 8 6 0.0464 0.4337 1 7 6 0.0634 0.5488 1
30 10 10 0.0411 0.4281 1 10 10 0.0541 0.5409 1
50 17 16 0.0315 0.4155 1 16 17 0.0463 0.5336 1

The results show that DM-optimal designs are more efficient for small size experiments. DM-
optimal designs are robust based on µ̃; therefore, do not change for different values of β1. Figure 2 is
drown only for different values of β0. Plots for some different values of β0 in Figure 2 show that the
DM-optimal designs and the D-optimal designs will be very close to each other when β0 increases.

3.2. Locally optimal design for the Quadratic model

Considering the effect of an explanatory variable on the response variable, the effect of explanatory
variables is sometimes stronger than the simple model describes. Therefore, the quadratic model de-
fined in (3.3) may be suitable. Here we survey DM-optimal design for the quadratic model. According
to the decreasing assumption on the mean response, we take negative values for β1 and β2. To find
DM-optimal design, the class of designs, Ξ, has been restricted to the saturated designs with three
support points, i.e., ξ =

{
µ̃1 µ̃2 µ̃3
n1 n2 n3

}
where, µ̃i = eβ1 xi+β2 x2

i is equivalent to

xi =
1

2
√
−β2

[
−
√
−r +

√
−r − 4 log(µ̃i)

]
,

where r = β2
1/β2. Therefore, Fξ =

(
1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

)
and Wξ = diag{niµi}3i=1 are the design matrix and the diag-

onal matrix of means, respectively. DM-optimal designs have been obtained for some representative
values of parameters (Table 3).

The DMeff of DM-optimal designs for the quadratic model are illustrated in Figure 3. It is observed
that DM-optimal designs are more accurate for small size experiments.

4. Conclusion

The non-existence of an explicit form for the parameter estimators of non-linear regression models
leads statisticians to apply asymptotic inference based on the likelihood function to obtain the optimal
design for GLMs.

In this study, we consider the Poisson regression model, which is a special case of the GLMs. The
results indicate that for small size experiments, the asymptotic properties of parameter estimators;
such as unbiasedness, may be in conflict. Therefore, we replace variance with MSE, which is consid-
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Figure 3: DMeff for DM-optimal design in the quadratic model. I: β1 = −1, β2 = −1, (a) β0 = 1; (b) β0 = 1.5; (c)
β0 = 2; (d) β0 = 2.5. II: β0 = 1, β2 = −1, (a) β1 = −1; (b) β1 = −1.5; (c) β1 = −2; (d) β1 = −2.5. III: β0 = 1,

β1 = −1, (a) β2 = −1; (b) β2 = −1.5; (c) β2 = −2; (d) β2 = −2.5.

ered as both a variance and bias, to obtain optimal design. In addition, we obtained a more precise
estimation of parameter β using the higher-order expansion of the likelihood function. To illustrate
the theoretical results, we consider two special cases of the Poisson regression model. DM-optimal
designs are calculated for small size experiments and compared with D-optimal designs, respectively.
The results show that the optimal designs based on the MSE are better than the optimal designs based
on the inverse of the information matrix.

An ongoing research activity is the investigation of Bayesian optimal designs instead of the local
optimal designs.

Appendix:

Proof of Theorem 1: For Poisson regression model (r, k)th element of MSE(β̂) is given by

mrk = E
{(
β̂r − βr

) (
β̂k − βk

)}
≃ E

∑
s1

irs1 ls1 −
1
2

∑
s1,t1

αrs1t1 ls1 lt1


∑

s2

iks2 ls2 −
1
2

∑
s2,t2

αks2t2 ls2 lt2


=

∑
s1,s2

irs1 iks2 E(ls1 ls2 ) +
1
4

∑
s1,t1,s2,t2

αrs1t1αks2t2 E
(
ls1 lt1 ls2 lt2

)
− 1

2

∑
s1,s2,t2

irs1αks2t2 E(ls1 ls2 lt2 ) − 1
2

∑
s1,t1,s2

iks2αrs1t1 E(ls1 lt1 ls2 ), (A.1)

where αrs1t1 = −
∑

q1,q2,q3
irq1 is1q2 it1q3λq1q2q3 . Note that Hst = 0.
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To obtain the expectation of the log-likelihood derivatives, we use a given general form by Barndorff-
Nielsen and Cox (1994, p 146) that is as follow

R∑
π=1

∑
R/π

νR1,...,Rπ = 0, (A.2)

where R = r1 · · · rm is a set of coordinate indices. The inner sum in equation (A.2) is over all partitions
of R into π blocks R1, . . . ,Rπ and νR1,...,Rπ = E(LR1 · · · LRπ ). Therefore, for the Poisson regression
model, we obtain

E(ls1 ls2 ) = −λs1 s2 ,

E(ls1 ls2 lt2 ) = −λs1 s2t2 ,

E(ls1 lt1 ls2 lt2 ) = λs1t1λs2t2 + λs1 s2λt1t2 + λs1t2λs2t1 − λs1t1 s2t2 .

Then, we have ∑
s1,s2

irs1 iks2 E(ls1 ls2 ) = irk.

Moreover, we can find∑
s1,s2,t2

irs1αks2t2 E(ls1 ls2 lt2 )

=
∑
i,m

µiµm

∑
s1

fs1 (xm)irs1


∑

s2,q2

fs2 (xi) fq2 (xm)is2q2


∑

t2,q3

ft2 (xm) fq3 (xi)it2q3


∑

q1

fq1 (xi)ikq1


=

∑
i,m

µiµmu2
im

∑
s1

fs1 (xm)irs1


∑

q1

fq1 (xi)ikq1

 .
Similarly,

∑
s1,t1,s2

iks2αrs1t1 E(ls1 lt1 ls2 ) =
∑
i,m

µiµmu2
im

∑
s2

fs2 (xm)iks2


∑

q1

fq1 (xi)irq1

 .
We also get

∑
s1,t1,s2,t2

αrs1t1αks2t2 E(ls1 lt1 ls2 lt2 ) = 2
∑
i,m

µiµmu2
im

∑
q1

fq1 (xm)irq1


∑

p1

fp1 (xi)ikp1


+

∑
i,m

µiµmuiiumm

∑
q1

fq1 (xi)irq1


∑

p1

fp1 (xm)λkp1


+

∑
i, j,m

µiµ jµmu2
i ju

2
m j

∑
q1

fq1 (xi)irq1


∑

p1

fp1 (xm)ikp1

 .
The results is obtained by substituting the above three equations in (A.1) and the straightforward

application of matrix algebra. �
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