• Title/Summary/Keyword: optimal processing

Search Result 2,265, Processing Time 0.028 seconds

Development of Stamping Process Optimization System through the Integration of Blank Design and Nesting (블랭크 설계와 배치의 일체화를 통한 스탬핑 공정 최적화 시스템의 개발)

  • 심현보;박종규
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.615-622
    • /
    • 2003
  • In the automobile industry, the design of optimal blank shape becomes a significant part of the stamping. It provides many evident advantages, sush as enhancement of formability, reduction of material cost and product development period. However, the nesting process, required for the optimal usage of materials in the blanking becomes more complicated as the blank shape becomes complicated, like most optimal blank shape. In this study, stamping process optimization system for the optimal usage of material has been developed through the integration of optimal blank design and optimal nesting. For optimal blank design, a radius vector method, the modified version of the initial nodal velocity method, the past work of the present author, have been proposed. Both the optimal blank design and optimal nesting programs have been developed under the GUI environment for the convenience of engineers. The efficiency of the optimization system has been verified with some chosen problems.

Optimal Decomposition of Convex Structuring Elements on a Hexagonal Grid

  • Ohn, Syng-Yup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.37-43
    • /
    • 1999
  • In this paper, we present a new technique for the optimal local decomposition of convex structuring elements on a hexagonal grid, which are used as templates for morphological image processing. Each basis structuring element in a local decomposition is a local convex structuring element, which can be contained in hexagonal window centered at the origin. Generally, local decomposition of a structuring element results in great savings in the processing time for computing morphological operations. First, we define a convex structuring element on a hexagonal grid and formulate the necessary and sufficient conditions to decompose a convex structuring element into the set of basis convex structuring elements. Further, a cost function was defined to represent the amount of computation or execution time required for performing dilations on different computing environments and by different implementation methods. Then the decomposition condition and the cost function are applied to find the optimal local decomposition of convex structuring elements, which guarantees the minimal amount of computation for morphological operation. Simulation shows that optimal local decomposition results in great reduction in the amount of computation for morphological operations. Our technique is general and flexible since different cost functions could be used to achieve optimal local decomposition for different computing environments and implementation methods.

  • PDF

Determination of Optimal Cell Capacity for Initial Cell Planning in Wireless Cellular Networks

  • Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • In wireless cellular networks, previous researches on admission control policies and resource allocation algorithm considered the QoS (Quality of Service) in terms of CDP (Call Dropping Probability) and CBP (Call Blocking Probability). However, since the QoS was considered only within a predetermined cell capacity, the results indicated a serious overload problem of systems not guaranteeing both CDP and CBP constraints, especially in the hotspot cell. That is why a close interrelationship between CDP, CBP and cell capacity exists. Thus, it is indispensable to consider optimal cell capacity guaranteeing multiple QoS (CDP and CBP) at the time of initial cell planning for networks deployment. In this paper, we will suggest a distributed determination scheme of optimal cell capacity guaranteeing both CDP and CBP from a long-term perspective for initial cell planning. The cell-provisioning scheme is performed by using both the two-dimensional continuous-time Markov chain and an iterative method called the Gauss-Seidel method. Finally, numerical and simulation results will demonstrate that our scheme successfully determines an optimal cell capacity guaranteeing both CDP and CBP constraints for initial cell planning.

OPTIMAL DESIGN OF BATCH-STORAGE NETWORK APPLICABLE TO SUPPLY CHAIN

  • Yi, Gyeong-beom;Lee, Euy-Soo;Lee, In-Beom
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1859-1864
    • /
    • 2004
  • An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.

  • PDF

Analysis on Optimal Threshold Value for Infrared Video Flame Detection (적외선 영상의 화염 검출을 위한 최적 문턱치 분석)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.100-104
    • /
    • 2013
  • In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

Scale Invariant Auto-context for Object Segmentation and Labeling

  • Ji, Hongwei;He, Jiangping;Yang, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2881-2894
    • /
    • 2014
  • In complicated environment, context information plays an important role in image segmentation/labeling. The recently proposed auto-context algorithm is one of the effective context-based methods. However, the standard auto-context approach samples the context locations utilizing a fixed radius sequence, which is sensitive to large scale-change of objects. In this paper, we present a scale invariant auto-context (SIAC) algorithm which is an improved version of the auto-context algorithm. In order to achieve scale-invariance, we try to approximate the optimal scale for the image in an iterative way and adopt the corresponding optimal radius sequence for context location sampling, both in training and testing. In each iteration of the proposed SIAC algorithm, we use the current classification map to estimate the image scale, and the corresponding radius sequence is then used for choosing context locations. The algorithm iteratively updates the classification maps, as well as the image scales, until convergence. We demonstrate the SIAC algorithm on several image segmentation/labeling tasks. The results demonstrate improvement over the standard auto-context algorithm when large scale-change of objects exists.

Genetic Algorithm based Methodology for an Single-Hop Metro WDM Networks

  • Yang, Hyo-Sik;Kim, Sung-Il;Shin, Wee-Jae
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • We consider the multi-objective optimization of a multi-service arrayed-waveguide grating-based single-hop metro WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. We develop and evaluate a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Our methodology provides the network architecture and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with our methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF