Analysis on Optimal Threshold Value for Infrared Video Flame Detection

적외선 영상의 화염 검출을 위한 최적 문턱치 분석

  • 정수영 (공주대학교 전기전자제어공학부) ;
  • 김원호 (공주대학교 전기전자제어공학부)
  • Received : 2013.11.18
  • Accepted : 2013.12.11
  • Published : 2013.12.31

Abstract

In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

본 논문은 열영상 기반의 화염 검출을 위한 기존의 문턱치 설정 기법들을 분석하고 최적 문턱치 설정 방안을 제시한다. 기존의 열영상 기반의 화염검출 알고리즘들은 보통 고정 문턱치를 이용하여 화염 후보영역을 추출하고 후처리를 통해 화염 검출을 최종 판정하므로 화염 후보영역의 결정 과정은 최종 화재 검출 결과에 많은 영향을 준다. 따라서 카메라의 종류나 운영 환경에 따라 입력 영상의 대비와 밝기의 변화가 발생하기 때문에 화염 검출 문턱치는 입력영상의 특성에 연동하여 설정되어져야 한다. 따라서 최적 문턱치 설정 방안을 제시하기 위해 고정 명암도, 평균값, 표준편차 및 최대값을 이용한 문턱치 설정 기법들을 비교 분석하였다. 결론적으로 최적 문턱치는 평균과 표준편차의 합보다 크며 최대값 보다는 작은 값으로 설정 한다면 화염 검출 정확도가 기존 고정 문턱치 방식에 비해 크게 개선될 것으로 기대된다.

Keywords

References

  1. Phillips, W., III; Shah, M.; Da Vitoria Lobo, N., "Flame recognition in video," Proceedings of IEEE Workshop on Applications of Computer Vision, pp.224-229, 2000.
  2. Liqiang Wang; Mao Ye; Yuanxiang Zhu, "A hybrid fire detection using Hidden Markov Model and luminance map," Proceedings of International Conference on Medical Image Analysis and Clinical Applications (MIACA), vol., no., pp.118,122, 10-13 June 2010.
  3. Budi, W.T.A.; Suwardi, I.S., "Fire alarm system based-on video processing," Proceedings of International Conference on Electrical Engineering and Informatics (ICEEI), vol., no., pp.1,7, 17-19 July 2011.
  4. Turgay Celik, Hasan Demirel, "Fire detection in video sequences using a generic color model", Fire Safety Journal, Volume 44, Issue 2, February 2009.
  5. T.Celik, H.Demirel, H.Ozkaramanli, "Automatic fire detection in video sequences", Proceedings of European SignalProcessing Conference (EUSIPCO), Florence, Italy, September 2006.
  6. Arrue, B.C.; Ollero, A.; Matinez de Dios, J.R., "An intelligent system for false alarm reduction in infrared forest-fire detection", IEEE Intelligent Systems and their Applications, vol.15, no.3, pp.64,73, May 2000.
  7. A. Ollero, B.C. Arrue, J.R. Martinez, J.J. Murillo, "Techniques for reducing false alarms in infrared forest-fire automatic detection systems", Control Engineering Practice, Volume 7, Issue 1, January 1999.
  8. Bosch, I.; Gomez, S.; Vergara, L.; Moragues, J., "Infrared image processing and its application to forest fire surveillance," Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, Sept. 2007.
  9. Bosch, I.; Gomez, S.; Vergara, L., "Automatic Forest Surveillance Based on Infrared Sensors," Proceedings of International Conference on Sensor Technologies and Applications, Oct. 2007.
  10. Linkai Chen; Pinwei Zhu; Guangping Zhu, "Moving objects detection based on background subtraction combined with consecutive frames subtraction," Proceedings of International Conference on Future Information Technology and Management Engineering (FITME), Oct. 2010.
  11. Yongquan Xia; Weili Li; Shaohui Ning, "Moving Object Detection Algorithm Based on Variance Analysis," Proceedings of International Workshop on Computer Science and Engineering, Oct. 2009.
  12. Ying Shi; Shu Cheng; Shuhai Quan; Jie Chen; Di Chen, "Moving objects detection by Gaussian Mixture Model: A comparative analysis," Proceedings of International Conference on Electrical and Control Engineering (ICECE), Sept. 2011.
  13. Jianchao Zeng; Sayedelahl, A.; Chouikha, M.F.; Gilmore, E.T.; Frazier, P.D., "Human detection in non-urban environment using infrared images," Proceedings of International Conference on Information, Communications & Signal Processing, Dec. 2007.
  14. Fengliang Xu; Xia Liu; Fujimura, K., "Pedestrian detection and tracking with night vision," IEEE Transactions on Intelligent Transportation Systems, vol.6, no.1, pp.63-71, March 2005. https://doi.org/10.1109/TITS.2004.838222
  15. Walczyk, Robert; Armitage, Alistair; Binnie, T. David, "FPGA implementation of hot spot detection in Infrared video," Proceedings of IET Signals and Systems Conference (ISSC), pp.233-238, 23-24 June 2010.