최소공정시간에 기초한 모듈형 설비 시스템개발

Development of the modularized equipment system on the basis of minimal processing time

**이용관¹, 나기룡², 윤도영³

*Y. K. Lee¹ (lurpy@hanmail.net), G. L. Na², D.Y. Yoon³ ¹ 삼성전기 기술총괄 생산기술센타

Key words: Module Equipment, Process Module, Transfer Module, Optimal processing, Processing Time

1. 서론

일본과 유럽등의 많은 선진국에서는 다양한 생산방식의 제안을 통하여 빠르고, 유연하고, 조정가능한 (scalability or reconfigurability) 최적화된 시스템을 추구해오고 있다. 이는 곧 기업의 생존경쟁력과 직결되며, 제품설계에서 생산까지의 시간 및 비용은 곧바로 소비자의호응과도 연관되므로, 어느 때보다 유연하고 빠른 생산시스템 설계 및 조직화가 요구되고 있다.

Kuniaki [1]는 기능단위로 구성되어있는 여러 개의 생산셀을 포함하는 생산라인을 구성하는 MSPS (Module Structured Production System)을 제안하였다. 각 기능단위는 자신들의 공정순서를 정의하는 속성을 가지고 있으며, MSPS 는 물리적인 계층구조(Hierachical structure)를 가지고 있는 부품들로 구성된 생산시스템이 되게끔 꾸몄다. Juliana [2]는 주어진 생산품의 구조내에서 제품의 수, 인터페이스 수, 신제품의 구성성분, 및 부품의대체가능성등에 기초하여 모듈화 정도를 분석할 수 있는 수학적 모델링을 완성하였다. 그리고, 강희석 [3]은 소형 카메라 모듈의 렌즈조립기를 모듈형식으로 구성하여 셀라인을 구성하는 방법을 채택하였다.

위에서 언급한 셀방식이나 MSPS 구조등은 전체생산을 일부 효율화 하는 측면이 있긴 하지만, 시스템을 설계하거나 기구물을 설계 및 제작하는 관점에서는 구체성이 떨어지고 실제 검토 대상 레이아웃이 있는 경우에 적합하다고 할 수 있겠다. 이에 대한 보완으로, 본 논문에서는 장비나 공장설계자의 관점에서 설비의 공정시간에기초한 모듈화 방법론을 제시하고, 이 방법론을 토대로실제 장비를 제작하여 봄으로써 방법론의 타당성을 검증하기로 한다.

2. 모듈화의 개념

모듈형 설비를 제작하게 되면 기본적으로, 크게 다섯 가지의 장점을가질 수 있다. 첫번째는 최소공정 시간에 기초한 Line Balance 를 최적화할 수 있다. 본 논문에서 소개하는 PM(Process Module) 시간과 TM(Transfer Module) 시간의 비를 기준으로 모듈화 레벨을 결정하게 되면, PM과 TM 간의 손실시간(Loss time)을 최소화 할 수 있으므로 공정라인을 최적화 할 수 있다. 둘째, 동종간 설비 표준화를 통한 호환성을 향상시킬 수 있다. 즉, 전장품과기구물이 동시에 모듈화 되므로 모듈 업그레이드가 진행되더라도 호환성을 높일 수 있게 된다. 셋째, 모듈화된 설비의 동시제작으로 제작기간을 단축할 수 있다. 넷째, 설비의 평균 수리시간(MTTR, Mean Time To Repair)을 최소화할 수 있다. 마지막으로, 모듈설비의 고장 시 A/S 를 신속하게 할 수 있다.

이와 같은 장점에도 불구하고, 모듈형 설비를 만들

기를 꺼려하는 것은 기구물의 추가제작에 따른 비용, 모듈설비간의 연결을 위한 제어시스템, 그리고 모듈화의 정도에 대한 기본 기준을 설정할 수 없기 때문이다.

본 논문에서는 모든 설비에 적용될 수 있는 일반화된 기구모듈화 방법론을 제시하고, 기구모듈화 방법론에따른 기구 Type 별 설계 지침을 제정하며, 이러한 기구모듈과 전장모듈 및 모듈간 연동 프로그램을 완성함으로써, 모듈설비 제작의 유용성을 보일 것이다. 이를 위하여 모듈설계 타입선정 흐름도(Flow chart)를 완성하고, 사례를통한 기구모듈화 방법론을 검증하였다.

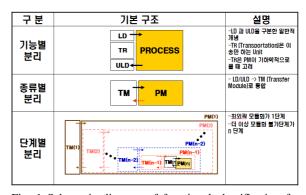


Fig. 1 Schematic diagram of functional classification for the modulrization.

Fig.1 은 모듈형 설비를 제작하기 위한 기능별, 종류별, 단계별 분리 과정을 요약한 것이다. 이송기능을 담당하는 부위는 전체를 TM(Transfer Module)로 정의하고, 작업을 직접 수행하는 부위는 PM(Process Module)로 단순화 하였고, 그 모듈화의 정도는 공장자동화 단위, 설비모듈화 단위 그리고, 설비내 공정지그 모듈화 단위등으로 계속하여 내부모듈화 할 수 있도록 단계별 분리로 정의 하였다.

모듈화의 정도를 설정하기 위한 모듈화 방법계수를 α 로 정의하면.

$$\alpha = \frac{PM}{TM} - t$$
 (1)

여기서, PM_t = Process Module time, TM_t = Transfer Module time 이다. 즉, PM 시간을 TM 시간으로 나누어 그 값이 1보다 크면 PM을 추가하고, 1보다 작으면 TM을 추가하는 방식으로 레이아웃을 잡을 수 있도록 하였다.

모듈화 타입선정 흐름도와 이에 따른 각 모듈화 지침을 Fig.2 에 도시하였다. Fig.2 에 따르면 n=1(초기 최상위분리단위)단계의 모듈화에서는 $\alpha \ge 2$ 이면 랜덤 이송형, $\alpha < 1$ 이면 순차이송형과 같은 모듈형 레이아웃구조가 나올 수있음을 알 수 있다. 가령, n=1 단계가 설비 레이아웃단계라고 가정하면, 2 단계(n=2) 는 설비의 모듈화 단계로 설비자체를 PM과 TM으로 분리할 수 있게 된다.

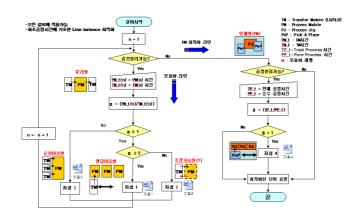


Fig. 2 Flow chart of modularization for any system on the basis of process and transfer module time

설비자체를 분리할 수 없는 단계까지 분리하게 되면 최종 분리된 모듈설비내에서는 PJ(Process Jig)와 PnP(Pick-n-Place) 로 구분하여 각각의 지그가 모듈화 된 최종구조를 형성할 수 있게 된다.

즉, 이러한 방식으로 설비모듈화, 지그모듈화등을 통하여 장비를 제작하게 되면, 순수한 공정시간에 기초하여 공정시간동안 쉬고 있는 이송모듈이 없게 되므로 최적화된 생산을 할 수 있게 된다. 또한 공장 레이아웃을 결정할 때도 설비간의 동작시간을 기초로 레이아웃을 설정할 수 있으므로 최소한의 공간과 최적화된 생산시스템을 구축할 수 있게 된다.

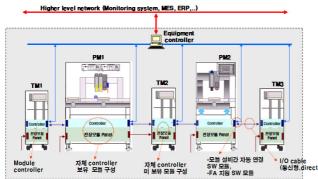


Fig. 3 Objective control structure for the modularized system

Fig. 3 은 모듈화된 설비간의 제어연동 구조를 설명한 것이다. 각각의 PM 과 TM 모듈은 자체제어기능과 설비간의 연동 S/W 를 탑재하여 설비의 분리나 합체 시 자동인식이 될 수 있도록 하였다.

3. 설비제작을 통한 검증

Fig.4 는 위에서 언급한 모듈화 개념을 이용하여 실제 제작한 자료화면이다. 그림의 좌측부위는 제품의 투입 모듈(TM1)이고 우측부위는 동일한 설계의 취출모듈(TM2)이며 중간에 있는 모듈이 공정모듈(PM)이다. 기구설계자의관점에서는 장비를 나누어서 설계할 수 있고, 수리 및 교체 시 대기하고 있는 모듈과 쉽게 교환 및 이송할 수 있으므로 유지보수가 간편함을 예측할 수 있다.

Fig. 4 Real design and manufacturing of the modularized equipment

초기 도출한 모듈화의 개념에서 장비에 적용하였으므로 n=1을 적용하였고, 2 단계(n=2)에서는 더 이상 분리될수 없는 상태로 판단하여 공정지그 모듈에서 공정지그(PJ)와 이송모듈(PnP)로 분리하여 공정시간을 최적화한 구조를 도출 하였다. 이에 대한 공정지그 레이아웃 구조가 Fig.5 에도식화 되었다.

Fig. 5 Design of the Process Jig(PJ) and Pick-n-Place (PnP) module at n = 2 level

위에서 제안한 방법론과 이에 기초하여 제작한 설비를 통하여 실제 제품가공시간을 반으로 줄여 생산성을 202.4% 향상 시킬 수 있었다.

4. 결론

생산성 향상과 생산시스템의 최적화를 위해서, 공정시간에 기초한 모듈형 설비제작 방법론과 이를 기준으로실제 장비를 제작해 봄으로써 그 유용성을 확인하였다. 본논문에서 제안하고 있는 모듈화 방법론을 적용하게 되면,실제 현장에서 낭비되고 있는 설비 유휴시간을 최소화할수 있으며, 기구설계자의 설계분담,설비 A/S, 수리를 위한MTTR 등을 최소화하여 눈에 보이지 않는 생산성을 크게향상할 수 있음을 알 수 있다.

또한, 본 논문에서는 다루지 않았지만 공장레이아웃 등을 정할 때도 폭넓게 활용할 수 있음을 알 수 있다.

참고문헌

- Kuniaki T., Nobuo N. Hironori H., and Yoshiro F., "Module Structured Production System", The 41st CIRP Conference on Manufacturing Systems, 2008
- Juliana Hsuan Mikkola, "Modularization assessment of product architecture," DRUID's 2000 Winter Conference, Hillerrod Denmark, 2000.
- 3. 강희석외, "지능형 민첩 생산시스템을 이용한 렌즈 조립 자동화", 한국정밀공학회 춘계학술대회, 2004