• Title/Summary/Keyword: optimal model of transportation

Search Result 334, Processing Time 0.029 seconds

Design of a Container Crane Controller for High Efficiency in Cargo Handling (하역효율 향상을 위한 컨테이너 크레인의 제어기 설계)

  • 신선근;최재준;소명옥;한국해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.502-508
    • /
    • 2000
  • The amount of container freight is continuously increasing recently, but freight congestion problem frequently occurs at ports due to low efficiency of container crane in transportation and cargo handling. In this paper, a method for designing a fuzzy controller of the container crane system is presented. In this scheme a mathematical model for the system is obtained in state space representation. The response of the proposed fuzzy controller is compared with that of the optimal controller at the same condition. Through the simulation results, the performance of the fuzzy controller was observed better than that of optimal controller in respect of reference change, disturbances and parameter change. The fuzzy controller was also more stable and robust than the optimal controller.

  • PDF

An Estimation of the Congestion Tolls Considering External Costs in Seoul (외부비용을 반영한 도시내 도로의 혼잡통행료 추정: 서울시를 대상으로)

  • PARK, Chanwoon;KIM, Sungsoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.520-530
    • /
    • 2015
  • This paper formulates the methodologies to estimate optimal congestion tolls from long-run and short-run perspectives and applies them to the highways of Seoul. An optimal long-run congestion toll is estimated with an optimal volume-capacity-ratio to minimize the total costs which consist of two components: road construction and maintenance costs and traveler costs. By contrast, an optimal short-run congestion toll is estimated with a supply-demand equilibrium which is determined by using a speed-flow function and a disaggregate modal choice model. The results of a long-run analysis for the Seobu urban expressway suggest the optimal volume-capacity-ratio of 1.35 and the optimal congestion toll of 503 Won per automobile kilometer. By contrast, those of a short-run analysis for the Mia-ro urban arterial suggest 1.31 and 420 Won, respectively. Although our results are to some degree dependent on the interest rate and time value assumed, one basic conclusion holds up: the congestions toll tested could generate substantial gains in social welfare if applied to Seoul.

Disaggregate Demand Forecasting and Estimation of the Optimal Price for UTIS Service (무선교통정보수집제공시스템(UTIS) 서비스의 이용 수요 예측 및 이용료 적정 수준 산정에 관한 연구)

  • Jang, Seok-Yong;Jung, Hun-Young;Ko, Sang-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.101-115
    • /
    • 2008
  • This study reports UTIS(Urban Traffic Information System), which has been generalized in developed countries through brisk research and development and is being promoted for introduction by National Police Agency and Road Traffic Authority to reduce the astronomical amount of social expenses including traffic congestion expenses. Also this study investigates the proper charges for using by the preestimate of demand and contentment according to methods of payment after the service is introduced. The results of this study are as follows. First, demand forecast model is constructed by Binary Logit Model. Second, forecast models of using aspects of UTIS service according to methods of payment are established by Ordered Probit Model. Third, the proper charges for using of UTIS service according to methods of payment are presented to the supplier in the aspects of users. For this, preferences by using aspects and methods of payment are captured. And unit elasticity of coefficient of utilization is understood through responsiveness analysis according to methods of payment.

A Criterion on the Selection of Optimal Mass Transport System by Transportation Corridor based on GIS Buffering Analysis (GIS Buffering 분석에 기반한 교통축별 최적대중교통시스템 선정기준)

  • Kim, ManWoong;Kim, Sigon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.477-483
    • /
    • 2010
  • The existing mass transport system, with its limited capacity and the saturated road networks, has given cause for a new means of transport to be developed, and strong demands for such new means of transport are observed more than ever. However, the traffic authority is seeking a new transport system that focuses more on LRT(Light Rail Transit), a downsized version of the existing urban railroad, rather than one that is appropriate to solve the traffic problems. Moreover, local governments are experiencing difficulties in planning their own mass transportation(bus or urban railroad) as they have no specified criteria for selecting a mass transport system. Accordingly, there has been an increasingly loud voice that calls for criteria to determine which mass transport system befits each transportation corridor. This paper develops a mass-transport demand forecasting model based on the GIS Buffering analysis of each transportation corridor in the city, sets up the capacity for each mass transport system and presents the criteria for selecting an optimal mass transport system for each transportation corridor. It also presents a methodology that identifies necessary and sufficient conditions for selection and evaluation, since it is most important to select the optimal mass-transport system that can meet the demand by each mass-transportation corridor.

The Optimal Ordering Policy for the Generalized Two-Stage Inventory System (일반화된 2단계 재고체계에서의 최적주문정책)

  • 정남기;차동원
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 1979
  • We consider the optimal ordering policy for a single-product two-stage inventory system where the main assumptions are as follows: (i) constant continuous demand only at stage 2, (ii) constant input (production) rate at stage 1, (iii) instantaneous delivery (transportation) from stage 1 to stage 2, (iv) backlogging is allowed only at stage 2, (v) an infinite planning horizon. Costs considered are ordering and linear holding costs at both stages, and linear shortage cost only at stages 2. By solving 9 different case problems, we have observed the general from of the optimal ordering policies for our model which minimizes the total cost per unit time. It is noticeable from this observation that the questionable but more often than not adopted assumption by many authors in determining the optimal potimal policy for multistage inventory systems, that the ordering (lot) sizes at each stage remain constant thruout the planning horizon, is not valid.

  • PDF

Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis (정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화)

  • Min Seek Kim;Min Jeong Park;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

Traffic management for large-scale evacuation with public transportation and calculation of appropriate operating ratio

  • Ham, Seunghee;Lee, Jun;Lee, Sang Jo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3347-3352
    • /
    • 2022
  • In 2013, the International Atomic Energy Agency (IAEA) changed the recommended maximum range of the Emergency Planning Zone (EPZ) to 30 km, and the Kori Nuclear Power Plant in Republic of Korea has also expanded the EPZ to 30 km, following the recommendation. As a result, metropolitan cities with a high population density are contained within the EPZ, and evacuating millions of people should be considered if the 30 km range of evacuation is to take place. This study proposes an evacuation plan using buses (public transportation) to transport people outside of the EPZ, quickly and efficiently. To verify the appropriate mode share ratio of buses that can guarantee the right of vulnerable road users and reduce traffic congestion, a model was built simulating the Kori Nuclear Power Plant in Ulsan Metropolitan City. The scenarios were established by changing the mode share ratio of buses and passenger cars by 10%. Considering a large-scale network analysis at the city level, a cell transmission model was applied to calculate the evacuation time in each scenario. The result shows that the optimal mode share ratio of buses is 40%, with a total evacuation time of 132 min, considering feasible bus fleets in Ulsan Metropolitan City.

A Model and Algorithm for Optimizing the Location of Transit Transfer Centers (대중교통 환승센터 입지선정 모형 연구)

  • Yoo, Gyeong-Sang
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.125-133
    • /
    • 2012
  • This paper deals with the passenger transfer trips counted from smart bus-card data from Seoul transit network to understand the current operational condition of the system. Objective of this study is to relocate the location of the transit transfer centers. It delivers a bi-level programing model. The upper model is a linear 0-1 binary integer program having the objective of total travel cost minimization constrained by the number of transfer centers and the total construction budget. The lower model is an user equilibrium assignment model determining the passengers' route choice according to the transfer center locations. The proposed bi-level programming model was tested in an example network. The result showed that the proposed was able to find the optimal solution.

Optimal Inventory Level of Bicycle Sharing Service Considering Operation Costs (운영비용을 고려한 자전거 쉐어링의 최적 재고수준)

  • Kim, Jin-Sik;Lee, Chul-Ung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.163-173
    • /
    • 2015
  • In this paper, it shows optimal inventory level of bicycle sharing service terminal by maintaining the lowest costs. As the interest to environment and exhaustion of resource increases globally, investment to sustainable transportation increases around advanced countries and interest to efficient transportation, managing and consuming of vehicle increases also. Vehicle sharing service is a model of rental car where customer rent cars for short periods of time often by the hour and its users are increasing for the reason that it is more convenient than car rent. In addition, bicycle sharing service is one of the major parts in vehicle sharing program and many of country are already managing it. This paper proposes optimal inventory levels of vehicle sharing service's terminal by using simulation calculating operation costs of vehicle sharing service.

The Optimal Maintenance Strategy of a Rail Bridge by Using Life Cycle Cost (생애주기 비용을 이용한 철도교량의 최적유지관리)

  • Yang Seung-le
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.544-549
    • /
    • 2005
  • Nowadays, most of bridge networks are complete or close to completion. The biggest challenge railroad./highway agencies and departments of transportation face is the maintenance of these networks, keeping them safe and serviceable, with limited funds. To maintain the bridges effectively, there is an urgent need to predict their remaining life from a system reliability viewpoint. And, it is necessary to develop the maintenance models based on system reliability concept. In this paper, maintenance models are developed for preventive maintenance and essential maintenance by using system reliability and lifetime distributions. The proposed model is applied to an existing railroad bridge. The optimal maintenance strategy of this bridge is obtained in terms of services life extension and cumulative maintenance cost.