• Title/Summary/Keyword: optical annealing

Search Result 650, Processing Time 0.028 seconds

A Study of Optimum Molding Condition of Aspheric Glass Lens(I) ; Annealing Condition Effect (비구면 Glass렌즈 최적 성형조건 연구(I) ; 서냉조건효과)

  • Cha, Du-Hwan;Kim, Hyeon-Uk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.197-198
    • /
    • 2006
  • 본 연구에서 개발하는 성형렌즈는 그림1과 같이 한쪽 면이 비구면인 평볼록 형상이다. Glass렌즈의 고온압축성형을 위해서는 초정밀 가공기술로 제작된 성형Mold가 필요하며, Mold재질에 따른 성형기술의 확립이 필수적이다. 또한, 성형Mold의 표면과 융착반응이 없는 Glass소재가 요구된다. 본 실험을 위한 성형Mold는 코발트(Co) 함량 0.5 %의 초경합금(WC; 일본, Everloy社, 002K)을 초정밀 연삭가공하여 제작하였다. Glass소재는 전이점(Transformation Point; Tg) $572\;^{\circ}C$,항복점(Yielding Point; At) $630\;^{\circ}C$의 열적 특성을 갖는 K-BK7(일본, Sumita社)을 사용하였으며, d선에서 굴절률 및 아베수는 각각 1.51633, 64.1이다. 비구면 Glass렌즈 성형은 GMP(Glass Molding Press; 일본, Sumitomo社, Nano Press-S)장비를 사용하여 성형온도 $625\;^{\circ}C$, 서냉온도 $550\;^{\circ}C$로 고정하고 성형압력를 200-800 N 범위에서 변화시켰다. 표 1에 성형변수로 사용한 서냉속도와 서냉전환온도 조건을 나타낸다. 표1과 같이 각 서냉조건별로5장의 렌즈를 성형 후 특성값이 평균치에 가까운 3장을 선별하여 그 특성을 비교하였다. 각 조건에 따른 성형렌즈의 형상정도(일본, Panasonic社, UA3P, 자유곡면형상측정기), 두께(일본, Mitutoyo社, MDC-25M, 마이크로메터), 굴절률(일본, Shimatus社, KPR-200, 정밀굴절률측정기) 및 MTF[해상도](독일, Trioptics社, Image Master HR, MTF-Field)를 측정하여 각각의 광학적 특성을 비교 평가하였다. 비구면 Glass렌즈 성형장비와 형상측정기를 그림 2, 3에 각각 나타낸다.

  • PDF

Optical and electrical properties of n-ZnO/p-Si heterojunctions and its dependence on annealing conditions (열처리 조건에 따른 n-ZnO/p-Si 이종접합 다이오드의 광학적, 전기적 성질의 변화)

  • Han, Won-Suk;Kong, Bo-Hyun;Ahn, Cheol-Hyoun;Kim, Young-Yi;Kim, Dong-Chan;Kang, Si-Woo;Yi, Yu-Jin;Kim, Hyoung-Sub;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.405-405
    • /
    • 2007
  • ZnO는 상온에서 3.38eV의 넓은 밴드갭을 가지는 직접천이형 반도체이며, 60meV의 큰 엑시톤 결합에너지를 가지는 UV 영역의 광소자로 응용할 수 있는 물질이다. 특히 ZnO를 이용한 LED에 대한 연구가 최근 활발히 이루어지고 있다. 그러나 n-ZnO/p-ZnO 동종접합 다이오드는 p-ZnO의 재현성이 없고, 낮은 정공농도를 보이기 때문에 n-ZnO를 기반으로 한 이종접합 다이오드의 개발이 필요하게 되었다. 특히 n-ZnO/p-Si 이종접합 다이오드는 낮은 구동전압과 제조단가가 저렴하다는 장점이 있다 또한 n-ZnO를 스퍼터링을 이용하여 증착할 경우 고온에서 성장함에도 불구하고 케리어 농도 및 이동도가 매우 낮다. 반면 MOCVD 법은 대면적 증착이 가능하고 비교적 낮은 온도에서 박막을 성장할 수 있고 전기적 특성 또한 매우 우수하다. 본 연구에서는 p-Si 기판위에 MOCVD 를 이용하여 n-ZnO를 증착하고, 이를 열처리하여 n-ZnO/p-Si 이종접합 다이오드의 특성 변화를 관찰하고자 하였다. n-ZnO/p-Si 시편을 $N_2$$O_2$ 가스 분위기에서 열처리한 후 소자의 광학적, 전기적 특성을 관찰하였다.

  • PDF

Fabrication and Characterization of Organic Thin-Film Transistors by Using Polymer Gate Electrode (고분자 게이트 전극을 이용한 유기박막 트랜지스터의 제조 및 소자성능에 관한 연구)

  • Jang, Hyun-Seok;Song, Ki-Gook;Kim, Sung-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.370-374
    • /
    • 2011
  • A conductive PANI solution was successfully fabricated by doping with camphorsulfonic acid and the polymerization of aniline and the confirmation of doping were characterized by FTIR spectroscopy. In organic thin film transistors, PANI gate electrodes were spin-coated on a PES substrate and their conductivity variations were monitored by a 4-probe method with different annealing temperatures. The surface properties of PANI thin films were investigated by an AFM and an optical microscope, OTFTs with PANI gate electrode had characteristics of carrier mobility as large as 0.15 $cm^2$/Vs and on/off ratio of $2.4{\times}10^6$, Au gate OTFTs with the same configuration were fabricated to investigate the effect of polymer gate electrode for the comparison of device performances. We could obtain the comparable performances of PANI devices to those of Au gate devices, resulting in an excellent alternative as an electrode in flexible OTFTs instead of an expensive Au electrode.

Influence of Ag Interlayer on the Optical and Electrical Properties of SnO2 Thin Films (Ag 중간층이 SnO2 박막의 광학적, 전기적 특성에 미치는 영향)

  • Jang, Jin-Kyu;Kim, Hyun-Jin;Choi, Jae-Wook;Lee, Yeon-Hak;Heo, Sung-Bo;Kim, Yu-Sung;Kong, Young-Min;Kim, Daeil
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.3
    • /
    • pp.119-123
    • /
    • 2021
  • SnO2 single layer and SnO2/Ag/SnO2 (SAS) tri-layered films were deposited on the glass substrate by RF and DC magnetron sputtering at room temperature and then the effect of Ag interlayer on the opto-electrical performance of the films were considered. As deposited SnO2 films show a visible transmittance of 85.5 % and a sheet resistance of 1.2×104 Ω/□, the SAS films with a 15 nm thick Ag interlayer show a lower resistance of 18.8 Ω/□ and a visible transmittance of 70.6 %, respectively. The figure of merit based on the optical transmittance and sheet resistance revealed that the Ag interlayer in the SnO2 films enhances the opto-electrical performance without substrate heating or annealing process.

The Electrical, Optical and Structural Characteristics of ITO Films Formed by RF Reactive Magnetron Sputtering (저온 스퍼터링법으로 증착된 ITO박막의 온도 변화에 따른 구조, 표면 및 전기적 특성)

  • Lee, Seok-Ryoul;Choi, Jae-Ha;Kim, Ji-Soo;Jung, Jae-Hak;Lee, Lim-Soo;Kim, Jae-Yeal
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • We investigated the structural, electrical and optical characteristics of thin films with ITO deposited by a low temperature RF reactive magnetron sputtering. The deposited thin films were annealed for 2 hours at various temperatures of $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$ and were analyzed by using X-ray diffractometer, scanning electron microscopy and 4 point probe. The films annealed at temperatures higher than $150^{\circ}C$ were found to be crystallized and their electrical resistance were decreased from $40{\Omega}cm$to $18{\Omega}cm$. The optical transmittance of the film annealed at $150^{\circ}C$ was increased by over 87% in the 450 nm ~ 900 nm wavelength range. Our results indicate that the films with ITO deposited at even a low temperature can show better optical and electrical properties through a proper heat treatment.

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0 (Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성)

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.158-163
    • /
    • 2011
  • $CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.

Three-Dimensional Image Display System using Stereogram and Holographic Optical Memory Techniques (스테레오그램과 홀로그래픽 광 메모리 기술을 이용한 3차원 영상 표현 시스템)

  • 김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.638-644
    • /
    • 2002
  • In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH(binary phase hologram) and LCD(liquid crystal display) for controlling reference beam. The reference beams are acquired by Fourier transform of BPHs which designed with SA(simulated annealing)algorithm, and the BPHs are represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software(Photoshop) with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. In output plane, we used a LCD shutter that is synchronized to a monitor that display alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO$_3$ repeatedly using the proposed holographic optical memory techniques.

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method (수열합성법으로 성장된 산화아연 나노막대의 특성 및 열처리 효과)

  • Jeon, Su-Min;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Choi, Hyun-Young;Yim, Kwang-Gug;Kim, Hyeoung-Geun;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.293-299
    • /
    • 2010
  • Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.

Consolidation of p-type Fe(Mn)Si2 Thermoelectric Powder and Microstructure (P형 Fe(Mn)Si2 열전재료 분말의 성형 및 미세조직)

  • Shim, J.S.;Hong, S.J.;Chun, B.S.
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.345-351
    • /
    • 2008
  • The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of $FeSi_2$ alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and ${\varepsilon}-FeSi$ phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of ${\alpha}-Fe_{2}Si_{5}$, ${\varepsilon}-FeSi$ and ${\beta}-FeSi_2$ phase. The semiconducting phase of ${\beta}-FeSi_2$ was transformed from ${\alpha}-Fe_{2}Si_{5}+{\varepsilon}-FeSi$ phase by annealing.

이온빔을 이용한 $SnO_2$ 무기 박막에서의 수평액정 배향 능력

  • Kim, Byeong-Yong;Kim, Yeong-Hwan;Park, Hong-Gyu;O, Byeong-Yun;Ok, Cheol-Ho;Han, Jeong-Min;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.184-184
    • /
    • 2009
  • This paper introduces the characteristics of SnO2 inorganic film deposited by radio-frequency magnetron sputtering as an alternative alignment layer for liquid crystal display (LCD) applications. The pretilt angle of the SnO2 layer was shown to be a function of the ion beam(IB) incident angle, a planer alignment of nematic liquid crystal was achieved. The about $1.8^{\circ}$ of stable pretilt angle was achieved at the range from 1500 ~ 2500eV of incident energy. To characterize the film shows atomic force microscopy (AFM) on the IB irradiated SnO2 surfaceand the X-ray phtoelectron spectroscopy analysis showed that the liquid crystal(LC) alignment on the IB irradiated $SnO_2$ surface was due to the reformation of Sn-O bonds. Also, Figure 1 shows that The alignment capability of the IB irradiated SnO2 layers is maintained until annealing temperature of $200^{\circ}C$. Comparable electro-optical characteristics to rubbed polyimide were also achieved.

  • PDF