• Title/Summary/Keyword: operator spaces

Search Result 404, Processing Time 0.025 seconds

ON THE SPECTRAL MAXIMAL SPACES OF A MULTIPLICATION OPERATOR

  • Park, Jae-Chul;Yoo, Jong-Kwang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.205-216
    • /
    • 1996
  • In [13], Ptak and Vrbova proved that if T is a bounded normal operator T on a complex Hilbert space H, then the ranges of the spectral projections can be represented in the form $$ \varepsilon(F)H = \bigcap_{\lambda\notinF} (T - \lambda I) H for all closed subsets F of C, $$ where $\varepsilon$ denotes the spectral measure associated with T.

  • PDF

BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

  • Wolf, Elke
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.455-462
    • /
    • 2011
  • An analytic self-map ${\phi}$ of the open unit disk $\mathbb{D}$ in the complex plane and an analytic map ${\psi}$ on $\mathbb{D}$ induce the so-called weighted composition operator $C_{{\phi},{\psi}}$: $H(\mathbb{D})\;{\rightarrow}\;H(\mathbb{D})$, $f{\mapsto} \;{\psi}\;(f\;o\;{\phi})$, where H($\mathbb{D}$) denotes the set of all analytic functions on $\mathbb{D}$. We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.

BEREZIN NUMBER INEQUALITIES VIA YOUNG INEQUALITY

  • Basaran, Hamdullah;Gurdal, Mehmet
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.523-537
    • /
    • 2021
  • In this paper, we obtain some new inequalities for the Berezin number of operators on reproducing kernel Hilbert spaces by using the Hölder-McCarthy operator inequality. Also, we give refine generalized inequalities involving powers of the Berezin number for sums and products of operators on the reproducing kernel Hilbert spaces.

A CLASS OF STRUCTURED FRAMES IN FINITE DIMENSIONAL HILBERT SPACES

  • Thomas, Jineesh;Namboothiri, N.M. Madhavan;Nambudiri, T.C. Easwaran
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • We introduce a special class of structured frames having single generators in finite dimensional Hilbert spaces. We call them as pseudo B-Gabor like frames and present a characterisation of the frame operators associated with these frames. The concept of Gabor semi-frames is also introduced and some significant properties of the associated semi-frame operators are discussed.

ITERATIVE ALGORITHMS FOR A FUZZY SYSTEM OF RANDOM NONLINEAR EQUATIONS IN HILBERT SPACES

  • Salahuddin, Salahuddin
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • In this research work, by using the random resolvent operator techniques associated with random ($A_t$, ${\eta}_t$, $m_t$)-monotone operators, is to established an existence and convergence theorems for a class of fuzzy system of random nonlinear equations with fuzzy mappings in Hilbert spaces. Our results improve and generalized the corresponding results of the recent works.

OPERATORS FROM CERTAIN BANACH SPACES TO BANACH SPACES OF COTYPE q ≥ 2

  • Cho, Chong-Man
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.53-56
    • /
    • 2002
  • Suppose { $X_{n}$}$_{n=1}$$^{\infty}$ sequence of finite dimensional Banach spaces and suppose that X is either a closed subspace of (equation omitted) or a closed subspace of (equation omitted) with p>2. We show that every bounded linear operator from X to a Banach space Y of cotype q(2$\leq$q〈p) is compact.t.t.

BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE

  • Fu, Xi;Zhang, Junding
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1337-1346
    • /
    • 2017
  • We define Bloch-type spaces of ${\mathcal{C}}^1({\mathbb{H}})$ on the upper half plane H and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator ${\mathcal{C}}_{\phi}$ acting between two Bloch spaces. These obtained results generalize the corresponding known ones to the setting of upper half plane.

MULTIPLICATION OPERATORS ON WEIGHTED BANACH SPACES OF A TREE

  • Allen, Robert F.;Craig, Isaac M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.747-761
    • /
    • 2017
  • We study multiplication operators on the weighted Banach spaces of an infinite tree. We characterize the bounded and the compact operators, as well as determine the operator norm. In addition, we determine the spectrum of the bounded multiplication operators and characterize the isometries. Finally, we study the multiplication operators between the weighted Banach spaces and the Lipschitz space by characterizing the bounded and the compact operators, determining estimates on the operator norm, and showing there are no isometries.

ASCENT AND DESCENT OF COMPOSITION OPERATORS ON LORENTZ SPACES

  • Bajaj, Daljeet Singh;Datt, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.195-205
    • /
    • 2022
  • In this paper, we provide various characterizations for the composition operator on Lorentz spaces L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ to have finite ascent (descent) in terms of its inducing measurable transformation. At the end, in order to demonstrate our outcomes, some examples are given.