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ASCENT AND DESCENT OF COMPOSITION OPERATORS

ON LORENTZ SPACES

Daljeet Singh Bajaj and Gopal Datt

Abstract. In this paper, we provide various characterizations for the

composition operator on Lorentz spaces L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤
∞ to have finite ascent (descent) in terms of its inducing measurable

transformation. At the end, in order to demonstrate our outcomes, some
examples are given.

1. Introduction

Let (X,A, µ) be a σ-finite complete measure space. Let h be a complex-
valued measurable function defined on X. For s ≥ 0, define µh, the distribution
function of h, as

µh(s) = µ{x ∈ X : |h(x)| > s}.
The non-increasing rearrangement of h is represented by h∗ and is given as

h∗(t) = inf {s > 0 : µh(s) ≤ t}, t ≥ 0.

For t > 0, let

h∗∗(t) =
1

t

∫ t

0

h∗(s)ds.

For a measurable function h on X, define ‖h‖pq, 1 < p ≤ ∞, 1 ≤ q ≤ ∞, as

‖h‖pq =


{
q
p

∫∞
0

(
t1/ph∗∗(t)

)q dt
t

}1/q

, 1 < p <∞, 1 ≤ q <∞,
sup
t>0

t1/ph∗∗(t), 1 < p ≤ ∞, q =∞.

The Lorentz space denoted by L(p, q)(X,A, µ) (or shortly written as L(p, q))
is defined to be the collection of all (equivalence classes of) measurable functions
h on X such that ‖h‖pq <∞. It is known that L(p, q) is a Banach space with
respect to the norm ‖ ·‖pq. The Lebesgue spaces Lp, 1 < p ≤ ∞, are equivalent
to the spaces L(p, p). Whenever we write L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞,
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we mean the Lorentz space L(p, q) under the norm defined above for the cases
1 < p < ∞, 1 ≤ q < ∞ and 1 < p ≤ ∞, q = ∞. For more on Lorentz spaces
one can refer to [1, 9, 10] and the references therein.

On the measure space (X,A, µ), let T : X → X be a measurable transfor-
mation, that is, preimage of measurable set is measurable. The transformation
T is said to be non-singular if µ(A) = 0, A ∈ A, implies µ(T−1(A)) = 0. The
non-singularity of a measurable transformation T ensures the well definedness
of a linear transformation CT given by f 7→ f ◦ T (see [1, Corollary 2.2]) on
the linear space of all complex-valued measurable functions on X. If CT on the
Lorentz space L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ is bounded with range in L(p, q),
then it is called a composition operator on L(p, q) induced by T . An extensive
literature is available for composition operators on measurable function spaces
and their applications, one can refer to [1, 2, 4, 12] and references therein.

The non-singularity of the measurable transformation T also confirms that
the measure µ◦T−1 given by µ◦T−1(A) = µ(T−1(A)), for A ∈ A, is absolutely
continuous with respect to the measure µ and it is symbolically written as
µ ◦ T−1 � µ. Now the Radon-Nikodym theorem shows the existence of a
non-negative locally integrable function hT (= dµ ◦T−1/dµ) on X, so that the
measure µ ◦ T−1 can be represented as

µ ◦ T−1(A) =

∫
A

hT (x)dµ(x) for A ∈ A.

For a bounded linear operator L on a Banach space Y , we use the symbols
N (L) and R(L) to denote the kernel and the range of L, respectively. The class
of all bounded operators on Y is denoted by B(Y ). The kernel space N (Lk)
and range space R(Lk) of Lk, k ≥ 0, satisfy that

{0} = N (I) ⊆ N (L) ⊆ N (L2) ⊆ · · · ⊆ N (Lk) ⊆ N (Lk+1) ⊆ · · ·
and

X = R(I) ⊇ R(L) ⊇ R(L2) ⊇ · · · ⊇ R(Lk) ⊇ R(Lk+1) ⊇ · · · .
We say that L is of finite ascent (descent) if N (Lk) = N (Lk+1)

(
R(Lk) =

R(Lk+1)
)

for some non-negative integer k and in this case we define such
smallest number as the ascent (descent) of L. If no such k is there, then we say
that the ascent (descent) of L is infinite. We denote the ascent and descent of L
by α(L) and β(L), respectively. These quantities were introduced by F. Riesz
[11] in his original investigation of compact linear operators. Furthermore, the
properties and relationships of these quantities can be found in [13,14].

Lorentz spaces first appeared in 1950 in the work of Lorentz [9], whereas in
1966, Hunt [8] discussed the conjugate of these spaces. But in the later years
various function spaces have been introduced along with various measures, like
Orlicz-Lorentz spaces, Lorentz Karamata spaces, Lorentz-Zygmund spaces etc.
Simultaneously, multiplication, composition and weighted composition opera-
tors are discussed on all these spaces. The properties of ascent and descent,
which were introduced with the aim of studying compactness of the operators,
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were discussed for the composition operators on lp spaces [5] and recently in
Orlicz spaces as well in [6, 7]. With the existence of so many function spaces
involving Lorentz spaces, there seems to be a need to discuss these properties
for composition operators on Lorentz spaces, which can then be a mile stone
to extend the study over various function spaces.

Our aim in this paper is to look the ascent and descent of composition op-
erators in terms of the inducing function and the measure under consideration.

2. Ascent of composition operators

Recall that, if T : X → X is a non-singular measurable transformation, then
T k is also a non-singular measurable transformation for every non-negative
integer k with respect to the measure µ. Thus, we can define the composition
operator CTk on Lorentz space L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ such that
CkT (h) = h ◦ T k = CTk(h) for every measurable function h of the Lorentz
space. Also, define the measure µ ◦ T−k on the measure space (X,A, µ) as

µ ◦ T−k(A) = µ ◦ T−(k−1)(T−1(A)) = µ ◦ T−1(T−(k−1)(A)) for A ∈ A.

Then

· · · � µ ◦ T−(k+1) � µ ◦ T−k � µT−(k−1) � · · · � µ ◦ T−1 � µ.(1)

If we put µk := µ ◦ T−k, then, by Radon-Nikodym theorem, there exists a non
negative locally integrable function hTk on X satisfying

µk(A) =

∫
A

hTk(x) dµ(x) for all A ∈ A.(2)

Here, hTk

(
= dµk

dµ

)
is called the Radon-Nikodym derivative of µk with respect

to µ. We claim that for each k ≥ 0, the kernel N (CkT ) of the operator CkT is
L(p, q)(Xk), the collection of all the measurable functions h in L(p, q) satisfying
h(x) = 0 for x ∈ X \Xk, where Xk = {x ∈ X : hTk(x) = 0}. In order to prove
this, we first assume that h is an element of L(p, q)(Xk). Then

µ
{
x ∈ X : h ◦ T k(x) 6= 0

}
≤ µ ◦ T−k (Xk) =

∫
Xk

hTk(x) dµ(x) = 0.

This infers that h ◦ T k = 0 a.e., that is, h ∈ N
(
CkT
)
, which proves that

L(p, q)(Xk) ⊆ N
(
CkT
)
. On the other hand, if h∈N

(
CkT
)
, then µ◦T−k {x ∈ X :

h(x) 6= 0} = 0. Take E={x∈X \Xk : h(x) 6= 0} and F ={x∈Xk : h(x) 6= 0}.
From (2), we have

0 =

∫
E

hTk(x) dµ(x) +

∫
F

hTk(x) dµ(x)

=

∫
E

hTk(x) dµ(x) ≥ 1

n

∫
En∩E

dµ =
1

n
µ (En ∩ E) ,
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for each n, where En = {x ∈ X \Xk : hTk(x) > 1/n}. This means that µ(En∩
E) = 0 for each n. Since E = ∪∞n=1(En ∩E), we have µ (E) = 0, that is, h = 0
a.e. on X \Xk. Hence, h ∈ L(p, q)(Xk). This justifies our claim.

Now we prove a result which, along with the preceding observation, will be
useful for yielding information about the ascent of composition operators in
Lorentz spaces.

Lemma 2.1. Let T be a non-singular measurable transformation on the mea-
sure space X that induces the composition operator CT on the Lorentz space
L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Then N (CkT ) = N (Ck+1

T ) if and only if
measures µk and µk+1 are equivalent.

Proof. Let CT ∈ B(L(p, q)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Suppose that µk
and µk+1 are equivalent. Then µk+1 � µk � µk+1. So, from (1), we have
µk � µk+1 � µ and µk+1 � µk � µ, and hence, by the chain rule,

hTk(x) =
dµk
dµk+1

(x) · hTk+1(x),

hTk+1(x) =
dµk+1

dµk
(x) · hTk(x).

Consequently, we have Xk = Xk+1. Since N (CkT ) = L(p, q)(Xk) for each k ≥ 0,
we have

N (CkT ) = L(p, q)(Xk) = L(p, q)(Xk+1) = N (Ck+1
T ).

Conversely, suppose that N (CkT ) = N (Ck+1
T ). This implies L(p, q)(Xk) =

L(p, q)(Xk+1). We first claim that µ (Xk \Xk+1) = 0. The assumption of
µ (Xk \Xk+1) > 0 provides a set Yn(= {x ∈ Xk : hTk+1(x) > 1/n}), n ∈ N, of
non zero finite measure. Now,

‖χYn
‖pq =

{
(p′)1/q (µ(Yn))1/p, 1 < p <∞, 1 ≤ q <∞,
(µ(Yn))1/p, 1 < p ≤ ∞, q =∞,

(3)

<∞,

where 1/p+ 1/p′ = 1. Thus, χYn
∈ L(p, q)(Xk) = L(p, q)(Xk+1). As a result,

χYn
vanishes outside Xk+1, which implies that Yn ⊆ Xk+1. Therefore

0 ≤ 1

n

∫
Yn

χYn
dµ ≤

∫
Yn

hTk+1 dµ = 0.

This infers that µ(Yn) = 0, which contradicts our assumption and proves our
claim. Similarly, µ (Xk+1 \Xk) = 0. Keeping (1) in mind, we only need to
show µk � µk+1 to prove that µk and µk+1 are equivalent. For, let us suppose
that µk+1(A) = 0, A ∈ A. This yields that for each subset B of A∫

B

hTk+1 dµ ≤
∫
A

hTk+1 dµ = µk+1(A) = 0,
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which on following the same steps as we have used in setting the claim that
µ (Xk \Xk+1) = 0, provides that

µ {x ∈ A : hTk(x) 6= 0, hTk+1(x) 6= 0} = 0.

Also, the measure of the set {x ∈ A : hTk(x) 6= 0, hTk+1(x) = 0} is zero as it is
a subset of Xk+1 \Xk. Thus

µk(A) =

∫
{x∈A :h

Tk (x)=0}
hTk dµ+

∫
{x∈A :h

Tk (x)6=0}
hTk dµ

= 0.

This completes the proof. �

Using Lemma 2.1, it is easy to attain the following.

Theorem 2.2. Let T be a non-singular measurable transformation on the
measure space X inducing the composition operator CT on the Lorentz space
L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. A necessary and sufficient condition for k
to be the ascent of CT is that k is the least non negative integer such that the
measures µk and µk+1 are equivalent.

A measurable transformation T is said to be measure preserving if it pre-
serves the measure in the sense that µ

(
T−1(A)

)
= µ(A) for all A ∈ A. The

findings of [1] show that a measure preserving transformation T always induces
the composition operator CT on Lorentz space L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞.
However, a measurable transformation T inducing the composition operator
CT on Lorentz space is surjective if and only if CT is injective. One can easily
attain the following as a consequence of the last theorem.

Corollary 2.3. Let CT ∈ B(L(p, q)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Then the
ascent of CT is 0 in each of the following situations.

(i) T is a measure preserving.
(ii) T is a surjective.

Theorem 2.2 can be restated as follows.

Theorem 2.4. A necessary and sufficient condition for a composition operator
CT on Lorentz space L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, to have the ascent infinite
is that the measures µk and µk−1 can not be equivalent for any natural number
k.

Proposition 2.5. Let CT ∈ B(L(p, q)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. If k is the
least non-negative integer such that Xc

k ⊂ T k+1 (Xc
k), then α(CT ) = k, where

Xc
k denotes the complement of Xk in X.

Proof. Let k be the integer such that Xc
k ⊂ T k+1 (Xc

k). It is easy to verify

that L(p, q)(X) = L(p, q)(Xc
k)
⊕
L(p, q)(Xk). Thus, if h ∈ N (Ck+1

T ), then

there exist h1 ∈ L(p, q)(Xc
k) and h2 ∈ L(p, q)(Xk) = N (CkT ) ⊆ N (Ck+1

T ), with

h = h1 + h2. This indicates that 0 = Ck+1
T h = Ck+1

T h1 = h1 ◦ T k+1. This
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along with the fact that Xc
k ⊂ T k+1(Xc

k) provides that h1(x) = 0 for x ∈ Xc
k.

However, h1(x) = 0 for x ∈ Xk being h1 ∈ L(p, q)(Xc
k). Hence, h1 = 0, which

further implies that, h = h2 ∈ N (CkT ). Consequently, N (CkT ) = N (Ck+1
T ) and

α(CT ) = k. �

We now introduce a notion which provides a sufficient condition for the
composition operators CT on L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, to have finite
ascent.

Definition. Let (X,A, µ) be a measure space. A measurable transformation
T : X → X is said to be pre-positive if it satisfies the condition µ

(
T−1(A)

)
> 0

whenever µ (A) > 0.

Example 2.6. (1) Let (R,A, µ) be the Lebesgue measure space with Borel
σ-algebra. Then, the transformation T : R → R defined as T (x) = x

2 is a
pre-positive measurable transformation.

(2) If
(
N, 2N, µ

)
is the measure space, where 2N and µ denotes the power

set and counting measure respectively, then every surjective measurable trans-
formation T on N becomes pre-positive measurable transformation. In fact, a
transformation T : N→ N is pre-positive if and only if it is surjective.

Theorem 2.7. A sufficient condition for an operator CT ∈ B(L(p, q)), 1 <
p ≤ ∞, 1 ≤ q ≤ ∞, induced by a measurable transformation T , to have the
ascent finite is that T is a pre-positive measurable transformation.

Proof. Let T be a pre-positive measurable transformation inducing CT on
L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. If we assume that the ascent of CT is
not finite, then for each natural number k, there exists hk ∈ N (CkT ) such that
µ (X ′k) > 0, where X ′k := {x ∈ X : hk ◦ T k−1(x) 6= 0}. Since T is pre-positive,
µ
(
T−1 (X ′k)

)
= µ

({
x ∈ X :

(
hk ◦ T k

)
(x) 6= 0

})
> 0, which contradicts the

entity of hk in N (CkT ). Therefore, the presumed condition on CT is false, and
it follows that the ascent of CT is finite. �

The following is an immediate consequence of the preceding theorem.

Corollary 2.8. If the measurable transformation T inducing CT ∈ B(L(p, q)),
1 < p ≤ ∞, 1 ≤ q ≤ ∞, is pre-positive, then the ascent of CT is zero, i.e.,
α(CT ) = 0.

Theorem 2.9. Let CT ∈ B(L(p, q)), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. If there exists
a sequence {Ak}k≥1 of measurable sets such that for each k, 0 < µ(Ak) < ∞,

µ
(
T−k(Ak)

)
= 0 and µ

(
T−(k−1)(Ak)

)
6= 0, then the ascent of CT can not be

finite.

Proof. Let {Ak}k≥1 be a sequence of measurable sets satisfying 0 < µ(Ak) <

∞, µ(T−k(Ak)) = 0 and µ
(
T−(k−1)(Ak)

)
6= 0 for each k. For each measurable

set B, we know that

‖χB‖pq =

{
(p′)1/q(µ(B))1/p, 1 < p <∞, 1 ≤ q <∞,

(µ(B))1/p, 1 < p ≤ ∞, q =∞,
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where 1/p + 1/p′ = 1. Hence, the given hypothesis provides that for each
natural number k, the characteristics function χAk

∈ L(p, q) and χAk
∈(

N (CkT ) \ N (Ck−1T )
)
. As a consequence, the ascent of the composition op-

erator CT is infinite. �

Now, we examine results yielding composition operators on the Lorentz
spaces L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ whose ascent are not finite.

Theorem 2.10. Let the measurable transformation T on X inducing CT on
L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ be such that the image of each measurable set
is measurable. If the ascent of the composition operator CT on L(p, q) space is
not finite, then there exists a sequence of subsets {Ak} of X such that for all
k ≥ 1

(i) 0 < µ(Ak) <∞,
(ii) Ak ⊆ T k−1(B) for some B ∈ A,
(iii) Ak /∈

{
T k(D) : D ∈ A and µ(D) > 0

}
.

Proof. Let the ascent of CT be infinite. Then, for each positive integer k,
we get N (Ck−1T ) ( N (CkT ). So, we can extract a measurable function hk ∈
N (CkT ) such that hk /∈ N (Ck−1T ). Take X ′k := {x ∈ X : hk ◦ T k−1(x) 6= 0}.
Clearly, µ (X ′k) > 0 and, by given condition on T , T k−1(X ′k) is measurable.
Now, we claim that µ(T k−1(X ′k)) > 0. To demonstrate this, suppose that

µ(T k−1(X ′k)) = 0. Since T is non-singular and X ′k ⊆ T−(k−1)
(
T k−1 (X ′k)

)
,

µ (X ′k) ≤ µ
(
T−(k−1)

(
T k−1 (X ′k)

))
= 0,

which is a contradiction. As a consequence, we achieve our claim.
Now, since the measure µ is σ-finite, we can choose a measurable subset Ak

of T k−1(X ′k) such that 0 < µ (Ak) < ∞. With little efforts, we can deduce
that Ak = {x ∈ Ak : hk(x) 6= 0}. To settle the final assertion, if we assume on
contrary that Ak = T k (D) for some measurable set D having positive measure,
then

µ
({
x ∈ D : hk ◦ T k(x) = 0

})
= 0.

Since hk ∈ N (CkT ), µ
({
x ∈ D :

(
hk ◦ T k

)
(x) 6= 0

})
= 0. The above two sets

each having measure zero mean that µ(D) = 0, this contradicts the fact that
µ(D) > 0. This completes the proof. �

If we put X = N,A = 2N and µ is the counting measure, then the corre-
sponding Lorentz space is denoted by l(p, q) and is known as Lorentz sequence
space (see [3]). The forthcoming theorem is the consequence of the previous
two theorems on the Lorentz sequence space l(p, q).

Theorem 2.11. A necessary and sufficient condition for the composition op-
erator CT on the Lorentz sequence space l(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞
induced by T : N→ N to have the ascent infinite is that there exists a sequence
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of distinct natural numbers 〈nk〉 such that nk /∈ T k(N) but nk ∈ T k−1 (N) for
each k ≥ 1.

Proof. The sufficient part is a direct consequence of Theorem 2.9. For the nec-
essary part, we apply Theorem 2.10 to get a sequence of non empty measurable
subsets {Ak}k≥1 of N satisfying Ak ⊆ T k−1(N) and Ak * T k(N) ⊆ T k−1(N).
Hence we can take a sequence of distinct natural number nk satisfying nk ∈
T k−1(N) and nk /∈ T k(N). �

3. Descent of composition operators

Next, we discuss the results on descent of the composition operator CT ∈
B(L(p, q)) on L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. For a σ-finite measure space
(X,A, µ), Theorem 3.3 of [1] states that a composition operator CT on L(p, q)
is surjective if and only if hT , the Radon Nikodym derivative of µ ◦ T−1 with
respect to µ, is bounded away from zero on its support and T−1(A) = A. This
fact suggests the following.

Theorem 3.1. If T inducing CT on the Lorentz space L(p, q), 1 < p ≤ ∞,
1 ≤ q ≤ ∞, is such that hT is bounded away from zero on its support and
T−1(A) = A, then the descent of CT is 0.

Now onward, we assume the measure space (X,A, µ) under consideration
is a separable σ-finite measure space unless stated otherwise. We recall the
definition of separable measure space from [6].

Definition. A measure space (X,A, µ) is said to be separable if for every
distinct pair of points x1 and x2 in X, we can find disjoint positive measurable
sets X1 and X2 such that x1 ∈ X1 and x2 ∈ X2.

Theorem 3.2. Suppose that (X,A, µ) is a separable σ-finite measure space.
A necessary condition for the composition operator CT on L(p, q), 1 < p ≤
∞, 1 ≤ q ≤ ∞ induced by a measurable transformation T : X → X to have
the descent finite is that T̂k is injective for some non negative integer k, where
T̂k = T

∣∣
R(Tk)

: R(T k)→ R(T k).

Proof. Suppose that the descent of the composition operator CT on L(p, q),
1 < p ≤ ∞, 1 ≤ q ≤ ∞ is finite. On contrary, if we assume that for each k, the
mapping T̂k is not injective, where T̂k is the same as stated in the statement
of the theorem, then there exist x′1, x′2 in X such that T k(x′1) 6= T k(x′2) and
T k+1(x′1) = T k+1(x′2). Furthermore, the separability and σ-finite conditions
of the measure space give disjoint measurable sets X1 and X2 with non-zero
finite measures containing x1(= T k(x′1)) and x2(= T k(x′2)), respectively. Hence
χX1

,χX2
∈ L(p, q). Now consider the element f of L(p, q) given by f :=

χX1
− χX2

. Then g = CkT f ∈ R(CkT ). But g /∈ R(Ck+1
T ) because g = Ck+1

T h

for some h ∈ L(p, q)(X) gives an absurd like 1 = f(x1) = g(x′1) = Ck+1
T h(x′1) =

Ck+1
T h(x′2) = g(x′2) = f(x2) = −1.
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This justifies the strict inclusion ofR
(
Ck+1
T

)
inR

(
CkT
)

for each non negative
integer k. As a result, we get a contradiction to the fact that the descent of
CT is finite. This completes the proof. �

The lines of proof of the above theorem suggest the following.

Theorem 3.3. If the measure space under consideration is a separable σ-finite
measure space, then a necessary condition for the composition operator CT on
L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, to have the descent at most k is that the

mapping T̂k is injective.

If the measure space under consideration has a positive measure for every
singleton set, it is always separable. The following can be deduced immediately
from the above theorem.

Corollary 3.4. Let the measure space X be such that every singleton set has
positive measure and T : X → X be such that CT ∈ B(L(p, q)), 1 < p ≤
∞, 1 ≤ q ≤ ∞. Then the descent of CT is greater than k if the mapping
T
∣∣
R(Tk)

: R(T k)→ R(T k) is not injective.

Proof. If T
∣∣
R(Tk)

is not injective, then on taking the measurable sets X1 and X2

(used in the proof of Theorem 3.2) containing x1(= T k(x′1)) and x2(= T k(x′2))
as the singleton sets {x1} and {x2} respectively, we can attain the desired
result. �

Now we present some examples in support of our study and justify the
relevance of our findings.

Example 3.5. Consider the measure space (N, 2N, µ), where 2N and µ denotes
the power set and counting measure, respectively.

(a) Define T : N → N as T (2n − 1) = T (2n) = n. It is easy to check
R(T k) = N. Hence, the mapping T : R(Tn) → R(Tn) is not one-
one for all n. By Corollary 2.8 and Corollary 3.4, the ascent of CT :
l(p, q)→ l(p, q) is zero and descent is infinite.

(b) Now, take T : N→ N as T (2n− 1) = 2n− 1 and T (2n) = 2n+ 2. We
can extract a sequence 〈2k〉k∈N from N such that 2k ∈ T k−1(N) and

2k /∈ T k(N). Therefore, by Theorem 2.11, α(CT ) =∞.

Example 3.6. Let ([0, 1],A, µ) be the measure space, where µ is the Lebesgue
measure.

• Let A be the σ-algebra of all Lebesgue measurable subsets of [0, 1].
For a fixed a ∈ (0, 1), define T : [0, 1] → [0, 1] as T (x) = ax. Then, it
is a non-singular measurable transformation inducing the composition
operator CT on Lorentz space L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞. T
is not pre-positive. In fact, µ ((a, 1]) = 1 − a, but µ

(
T−1(a, 1]

)
= 0.

Now, we use Theorem 2.9 to confirm that the ascent of CT is infinite.
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Take Ak =
(
ak+1, ak

)
. Then µ

(
T−k (Ak)

)
= µ (a, 1) = 1 − a 6= 0 and

µ
(
T−(k+1) (Ak)

)
= µ (∅) = 0. As a consequence, α (CT ) =∞.

• If we take A = {∅, [0, 1]} and T : [0, 1]→ [0, 1] as

T (x) =

{
2x 0 ≤ x ≤ 1

2 ,
1 1

2 ≤ x ≤ 1,

then T is a non-singular and pre-positive measurable transformation.
Therefore, by Corollary 2.8, α (CT ) = 0.
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