• 제목/요약/키워드: operator spaces

검색결과 404건 처리시간 0.025초

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.

ITERATIVE ALGORITHM FOR RANDOM GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS WITH RANDOM FUZZY MAPPINGS

  • Faizan Ahmad, Khan;Eid Musallam, Aljohani;Javid, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.881-894
    • /
    • 2022
  • In this paper, we consider a class of random generalized nonlinear mixed variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings in real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approximate solution of this class of inclusions. Further, we discuss the convergence analysis of the iterative algorithm under some appropriate conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.

A NOTE ON THE PROPERTIES OF PSEUDO-WEIGHTED BROWDER SPECTRUM

  • Preeti, Dharmarha;Sarita, Kumari
    • 대한수학회보
    • /
    • 제60권1호
    • /
    • pp.123-135
    • /
    • 2023
  • The goal of this article is to introduce the concept of pseudo-weighted Browder spectrum when the underlying Hilbert space is not necessarily separable. To attain this goal, the notion of α-pseudo-Browder operator has been introduced. The properties and the relation of the weighted spectrum, pseudo-weighted spectrum, weighted Browder spectrum, and pseudo-weighted Browder spectrum have been investigated by extending analogous properties of their corresponding essential pseudo-spectrum and essential pseudo-weighted spectrum. The weighted spectrum, pseudo-weighted spectrum, weighted Browder, and pseudo-weighted Browder spectrum of the sum of two bounded linear operators have been characterized in the case when the Hilbert space (not necessarily separable) is a direct sum of its closed invariant subspaces. This exploration ends with a characterization of the pseudo-weighted Browder spectrum of the sum of two bounded linear operators defined over the arbitrary Hilbert spaces under certain conditions.

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB;A. AISSAOUI;M. DALAH
    • Journal of applied mathematics & informatics
    • /
    • 제41권3호
    • /
    • pp.487-510
    • /
    • 2023
  • We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF p(x)-TRIHARMONIC PROBLEM

  • Belakhdar, Adnane;Belaouidel, Hassan;Filali, Mohammed;Tsouli, Najib
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권2호
    • /
    • pp.349-361
    • /
    • 2022
  • In this paper, we study the following nonlinear problem: $$\{-\Delta_{p}^{3}(x)u\;=\;{\lambda}V_{1}(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u\;=\;{\Delta}u\;{\Delta}^{2}u\;=\;0\;on\;{\partial}\Omega, $$ under adequate conditions on the exponent functions p, q and the weight function V1. We prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier boundary value conditions on a bounded domain in ℝN. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.

PARALLEL SHRINKING PROJECTION METHOD FOR FIXED POINT AND GENERALIZED EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLD

  • Hammed Anuoluwapo Abass;Olawale Kazeem Oyewole
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.421-436
    • /
    • 2024
  • In this article, we propose a shrinking projection algorithm for solving a finite family of generalized equilibrium problem which is also a fixed point of a nonexpansive mapping in the setting of Hadamard manifolds. Under some mild conditions, we prove that the sequence generated by the proposed algorithm converges to a common solution of a finite family of generalized equilibrium problem and fixed point problem of a nonexpansive mapping. Lastly, we present some numerical examples to illustrate the performance of our iterative method. Our results extends and improve many related results on generalized equilibrium problem from linear spaces to Hadamard manifolds. The result discuss in this article extends and complements many related results in the literature.

ON THE GENERALIZED ORNSTEIN-UHLENBECK OPERATORS WITH REGULAR AND SINGULAR POTENTIALS IN WEIGHTED Lp-SPACES

  • Imen Metoui
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we give sufficient conditions for the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials AΦ,G,V,c=∆-∇Φ·∇+G·∇-V+c|x|-2 with a suitable domain generates a quasi-contractive, positive and analytic C0-semigroup in Lp(ℝN , e-Φ(x)dx), 1 < p < ∞. The proofs are based on an Lp-weighted Hardy inequality and perturbation techniques. The results extend and improve the generation theorems established by Metoui [7] and Metoui-Mourou [8].

A NEW RELAXED TSENG METHOD FOR FINDING A COMMON SOLUTION OF FIXED POINT AND SPLIT MONOTONE INCLUSION PROBLEMS

  • Lusanda Mzimela;Akindele Adebayo Mebawondu;Adhir Maharaj;Chinedu Izuchukwu;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.225-258
    • /
    • 2024
  • In this paper, we study the problem of finding a common solution to a fixed point problem involving a finite family of ρ-demimetric operators and a split monotone inclusion problem with monotone and Lipschitz continuous operator in real Hilbert spaces. Motivated by the inertial technique and the Tseng method, a new and efficient iterative method for solving the aforementioned problem is introduced and studied. Also, we establish a strong convergence result of the proposed method under standard and mild conditions.

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

TRANSLATION THEOREM FOR THE ANALYTIC FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED LINEAR OPERATORS ON ABSTRACT WIENER SPACES AND AN APPLICATION

  • Jae Gil Choi
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.1035-1050
    • /
    • 2024
  • The Cameron-Martin translation theorem describes how Wiener measure changes under translation by elements of the Cameron-Martin space in an abstract Wiener space (AWS). Translation theorems for the analytic Feynman integrals also have been established in the literature. In this article, we derive a more general translation theorem for the analytic Feynman integral associated with bounded linear operators (B.L.OP.) on AWSs. To do this, we use a certain behavior which exists between the analytic Fourier-Feynman transform (FFT) and the convolution product (CP) of functionals on AWS. As an interesting application, we apply this translation theorem to evaluate the analytic Feynman integral of the functional $$F(x)={\exp}\left(-iq\int_{0}^{T}x(t)y(t)dt\right),\,y{\in}C_0[0,\,T],\;q{\in}{\mathbb{R}}\,{\backslash}\,\{0\}$$ defined on the classical Wiener space C0[0, T].