• Title/Summary/Keyword: operator space

Search Result 972, Processing Time 0.025 seconds

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

Deep Learning(CNN) based Worker Detection on Infrared Radiation Image Analysis (딥러닝(CNN)기반 저해상도 IR이미지 분석을 통한 작업자 인식)

  • Oh, Wonsik;Lee, Ugwiyeon;Oh, Jeongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.8-15
    • /
    • 2018
  • worker-centered safety management for hazardous areas in the plant is required. The causes of gas accidents in the past five years are closely related to the behavior of the operator, such as careless handling of the user, careless handling of the suppliers, and intentional, as well as equipment failure and accident of thought. In order to prevent such accidents, real-time monitoring of hazardous areas in the plant is required. However, when installing a camera in a work space for real-time monitoring, problems such as human rights abuse occur. In order to prevent this, an infrared camera with low resolution with low exposure of the operator is used. In real-time monitoring, image analysis is performed using CNN algorithm, not human, to prevent human rights violation.

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

Laparoscope Manipulator Control for Minimally Invasive Surgery (최소침습수술을 위한 복강경 매니퓰레이터 제어)

  • Kim, Soo-Hyun;Kim, Kwang-Gi;Jo, Yung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF

The Study on EU ETS (欧盟航空减排交易体制评析) -From the Perspective of China-

  • Qin, Huaping
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • European Union unilaterally included the emissions from aviation activities into EU ETS on 19 November 2008 by amending Directive 2003/87/EC. According to the Directive all the emissions(mainly against the CO2) from aviation activities shall be subject to the regulation of EU ETS from 2012. For the period from 1 January 2012 to 31 December 2012, the total quantity of allowances to be allocated to aircraft operators shall be equivalent to 97% of the historical aviation emission s. From 1 January 2013, the allowances will be reduced to 95%. The allocation of allowances which may be applied by each operator with free of charge will be reduced from 85% to 82% from 1 January 2012 to 1 January 2013. Since the Directive will affect every country's airline industry more or less, the nations and international organizations respond variously. The controversial focus is that whether EU has the right to unilaterally include the emissions from international aviation activities into EU ETS. This article firstly analyzes the effect caused by EU ETS to China's airline industry, and then studies the legality of the action of EU subject to current positive international law, and finally draws the conclusion that EU enjoys no such right to unilaterally include the emissions from international aviation activities.

  • PDF

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

The Concrete Classification and Registration for sUAS (현행 법률상 비사업용 소형무인비행장치 신고 및 식별표시의무 강화 규정 도입의 필요성)

  • Kim, Sung-Mi
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.125-157
    • /
    • 2019
  • Technological advancement and demand of sUAS (small Unmanned Aircraft System)are rapidly growing, which makes the current legal system unable to follow. Currently, Aviation Security Act and its subordinate law exclude the registration and certification for non-commercial purpose sUAS weighing less than 12kg. Despite this sUAS being the most popular model for consumer, there is no way to regulate them legally. When there is sUAS crash accident, the operator legally responsible for the occurrence damage cannot be identified. It has been an issue for a long time with the concrete classification and registration of sUAS, but it has not been introduced yet. It is obvious that damages caused by sUAS will be transferred not only to operators but also to third parties. Discussions on liability insurance for these sUAS are actively being held. But first, it is necessary to identify who will be responsible for the damage caused by the sUAS. In other words, even with the liability system established, without clarified operator the damage occurred cannot determine who is responsible. According to the cases of America and Germany, they have enforced the law of registration and identification obligated to 200g or 250g sUAS. Therefore, it is necessary to prepare regulations on concrete classification and registrations to identify for noncommercial purpose sUAS as soon as possible in Korea.

Colormap Construction and Combination Method between Colormaps (컬러맵의 생성과 컬러맵간의 결합 방법)

  • Kim, Jin-Hong;Jo, Cheol-Hyo;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.541-550
    • /
    • 1994
  • A true color image is needed many data on the occasion of the transmission and storage. Therefore, we want to describe color image by a minority data without unreasonableness at eyesight. In this paper, it is presented 256 colormap construction method in RGB, YIQ/YUV space and common colormap expression method at merge between colormaps by reason of dissimilar original color image to display at a monitor for each other colormap at the same time. In comparison with processed result in RGB, YIQ/YUV space, it was measured by PSNR, standard variation, and edge preservation rate using sobel operator. Process time is 3second in colormap construction and 2second in merge between colormaps. In the PSNR value, RGB space has higher 0.15, 0.34 on an average than YIQ and YUV spae. Standard variation has lower in 0.15, 0.41 on an average than Yiq and YUV space. But in the data compression, YIQ/YUV space have about 1/3 compression efficiency than RGB space by reason of use to only 4bit of 8bit in color component.

  • PDF