Journal of Electrical Engineering & Technology Vol. 6, No. 5, pp. 697~705, 2011 697

http://dx.doi.org/10.5370/JEET.2011.6.5.697

State-Space Analysis on The Stability of Limit Cycle Predicted
by Harmonic Balance

Byungjin Lee*, Sukchang Yun*, Chang Joo Kim*, Jungkeun Park* and Sangkyung Sung’

Abstract — In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the
feedback connection is considered to argue against its planar orbital stability. Through a state space
approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by
solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear
feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using
a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model
through the introduction of a residual operator. By considering a series of transformations, such as a
modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate
transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix.
Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the

transformed system.
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1. Introduction

In many practical closed-loop systems, nonlinearity in
the feedback connection often exists because of internal
physical constraints. In these cases, a periodic signal may
exist in the loop as an equilibrium state. Classically, in
view of simplified planar dynamics, this periodic signal is
often called a limit cycle. In addition, if the solution
trajectory generates a closed positive semi-orbit as its limit
set, this limit cycle can be effectively predicted via the
describing function method. The describing function
method provides an optimal quasi-linearization for the
given nonlinearity in the feedback loop [1, 2], thereby
enabling the prediction of the best approximated sinusoid
in the loop. Thus, a number of engineering problems in
such fields as biomedical engineering [3], switching
system [4], resonant converters [5], fuzzy system
prediction [6], and magnetic bearing system problem [7]
used the describing function method to approximate the
solution of loop equation.

In other aspects, to compliment its inherent approxi-
mation property, several results based on operator theory
have attempted to verify the theoretical soundness of
describing function method [8]-[12]. From these results, a
compact existence domain and norm bound of the higher-
order solution terms, as well as the information of the best
predicted sinusoid are provided. In addition, a very
insightful design process for analyzing and designing the
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feedback control loop has been established via a graphical
method.

However, the stability problem of the limit cycle
determined by harmonic balance has been relatively less
studied. A classical approach for the stability analysis on
the limit cycle takes advantage of quasi-static scheme. For
instance, an extended Nyquist stability criterion [13] for
stability test can be used. By checking the Nyquist
condition, whether or not a steady-state limit cycle is stable
under perturbation case can be determined. The methods of
incremental describing function and Loeb condition [2]
also provide the stability condition of the predicted limit
cycle. However, quasi-static approaches simply focus on
the harmonic balance; they do not consider the effect
because of the neglected uncertain part of the original loop
equation.

Meanwhile, a rigorous approach to treat the stability of
periodic signal has been sought via an exact solution-based
analysis, which often necessitates very complicated or
nearly impractical mathematics. Examples include
mathematical theories such as linearization combined with
Floquet theory [14], linearization combined with a high-
order Galerkin approximation and Hopf bifurcation [15],
and the theory of integral manifold and stability invariance
surface at perturbation by Pyatnitskiy and Rapoport [16]
and Sastry [17]. However, these implicit methods are
extremely difficult to apply, even in a simple problem case.

In the present paper, the stability problem of the limit
cycle is revisited through a state-space analysis approach.
With the extension of a preliminary formulation in [8] and
systematic developments in [21], the claimed proposition
provides a modified result investigating the stability of the
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limit cycle. Specifically, it relates to the stability criterion
of the quasi-static solution considering the uncertainty term
that appears during approximation of the exact loop
equation around the limit cycle. In the analysis, the
required assumptions are conventional, such as the
Lipschitz continuity of the nonlinearity and the solution’s
existence at the harmonic balance. Under these conditions,
it is claimed that the problem can be modified into
conventional problem that regards the loop stability around
its equilibrium. Using various transformations of modified
eigenstructure decomposition, periodic averaging, change
of variables, and coordinate transformation, stability of the
limit cycle, which is predicted by the harmonic balance
solution, is analyzed by checking a scalar function and
matrix. In completing the stability proof, a composite
Lyapunov function consisting of respective candidate
Lyapunov functions for the isolated subsystems is
introduced. The main results arguing against sufficiency
for orbit stability are therefore drawn with a more compact
and straightforward treatment on perturbation bounds,
compared with the previous work [21]. In Section 2,
system and required preliminaries are given. System
transformations to yield a proper problem formulation are
presented in Section 3. The main result and remark are
shown in Section 4, followed by a conclusion in Section 5.

2. Preliminaries for System Analysis
2.1 Notation and Definition

The notations and definitions are given as follows:

x=[x,x,,.x,]'e R"

9seeery,

: an n-tuple real vector

n
||x||p - (;|x"|p)”p : class of the p-norms
||x||w = mlax|xl.| : class of the infinite norms

L, : aset of all piecewise continuous functions such that

p-norm is bounded, that is,
"x"L; = (."070 "x(l‘)”pdl‘)“p <o, 1<p<o

L' :a set of all piecewise continuous uniformly
bounded functions such that infinite norm is
bounded, that is,

I = sup )] <o
. te[0,0)

d(x,n) = fflelgl ||x _)’” : distance function

Consider a smooth dynamical system represented as

%:f(t,m (1)

on R".If n is assumed as a T-periodic orbit of (1), an
open set can be defined as ¢ neighborhood of 7:

B,(m)={xeR":d(x,n) <&} 2

The orbit 7 is stable if trajectories starting near 7 stay
in the neighborhood of 7. In other words, for every £>0,
there exists 6>0 , such that x(¢)eB;(#n) —
x(t) e B,(n7) for all ¢t2¢,. The orbit 7 is asymptotically
stable if it is stable and if the trajectories beginning near 7
tend to 7, in other words, if there exists & >0 such that
d(x(t),n) >0 as t > forall x(z,)e B;(n) [20].

=
— G >
l// 4+
¥
Fig. 1. Block diagram of the nonlinear feedback SISO
system.

Typically, this orbit (asymptotic) stability considers
stability problem around periodic orbit, whereas the
general Lyapunov (asymptotic) stability considers behavior
around equilibrium (e.g., origin).

2.2 System and Problem Formulation

Consider a single-input, single-output, and nonlinear
feedback system, as shown in Fig. 1, consisting of linear
plant and nonlinearity in the feedback connection. Assume
that the plant belongs to L;[0,0) with a relative degree n
and, for simplicity, no zero dynamics. Assume also that the
nonlinearity ¥ is an odd symmetric, sector-bounded, and
piecewise continuous function, such that

St =W (M —cy'lw(»)—c,y]1<0}

where ¢, and ¢, are the lower and higher bounds of the
sector, respectively. In addition, ¢, =(¢, +¢,)/2 and
¢, =(c,—¢)/2 are defined. A classical describing
function approximates the nonlinearity through an optimal
quasi-linearization,  thereby  predicting the  best
approximated sinusoid in the feedback system. Using this
concept, assume that there exists a sinusoidal limit cycle
point, the amplitude-frequency pair of which is given as
(r,,@,) . The problem studied in this paper is therefore to
prove the orbit asymptotic stability of the quasi-static
solution of the nonlinear system in Fig. 1.
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To solve the stability problem, several preliminary steps
are required [21]. With » = 0, the loop equation for the
system in Fig. 1 is represented as follows:

y==-Gy(y) 3)

where the plant is assumed as G=d, /[s" +ns"" +
n,s"?+...+n,] with n distinct eigenvalues. Because G
is a linear operator, (3) can be represented as follows:

Ly+y(y)=0, “4)

where the differential operator L is easily found. After
introducing a residual operator, (4) can be decomposed into
linear and nonlinear residual parts. If a residual operator is
defined using nominal gain of the nonlinearity, the
following nonlinear residual term is defined:

y»)=Y)y-w).

By introducing the describing function for the
nonlinearity, defining a modified linear operator [, is also
possible. Thus, the linear part of the differential operator
equation can be obtained as follows:

Ly=Ly+¥(r)y.

Next, substituting the residual term into (4), the resulting
operator equation that uses both the residual term and the
modified linear operator term is obtained. The loop
equation in (4) can then be rearranged into

Ly=y(»). (5)
For a state-space approach, state variables are defined as
Y = [y v> y; ..v,J. After normalizing coefficients of

plant dynamics, (5) can be rearranged into the Brunovsky
controllable by form

dy _ -
;§=Ay+3woo, 6)

where 4 and B are given as

0 1 0 0
0 0 1 0
A= : ,
0 0 0 1
| -[n,+d,Y(@)] -n,_ -n,_, -n, |
B=[0 0 0 4d7.

Note that the harmonic balance method determines ,
when Ly =0, which suggests that the matrix 4 has *iw,

as its spectrum. The latter part of this section demonstrates
that the linear perturbed system in (6) can be transformed
into the isolated equations consisting of principal term and
higher-order residual terms.

Because 4, =*i®w, are eigenvalues of A in (6), the
following equations hold:

Av, = Ay, =iy,

Av, =y, =—-io,v, .

By defining two real vectors ¢ € R" and e, € R" such
that

g=[1 0 -0 0 o ~-]T,

a=[0 o, 0 -@ 0 -],
the following equations hold:

42, = -0z, (7a)
12, = 02, (7b)

because ¢ tie, turns out to be the eigenvector of tiw,
for 4 R™" . Because A4 is a nonsingular matrix, (6) can
be transformed into a suitable form by introducing a new

variable: ¢ =V,"'Y, where ¥, is given by

o
V=g & .. 7
o

and where Vs are the remaining eigenvectors, except for
v, and v,. Applying the transformation matrix 7, to the
system in (6) yields

d’ _ - o
L NG+ KpGHTE). ®)
where
"0 w ;
’ 02><1172
-, 0
A= 4 01,
On—2><2
i 0 A ]
and K= V:B . In (8), the variables are given as

¢=[6 ¢ T and y=y =¢+v(, . Here, W, is an
n-2-dimensional low vector composed of the first element
of column v, for i=3,4,...,n. Finally, using the van der
Pol transformation, a decoupled equation having principal
and higher-order harmonic terms is achieved. First, ¢(?)
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is defined as

COS @,

P(1) = {

sin @yt
—sinwyt coswyt |

By differentiating the following equation relating the
variable [¢, £,]" with a newly defined variable [z, z,]",

¢ _ Z
2Jeelz) @

and by using (8), a transformed equation containing
principal terms is obtained as follows:

d gl _ Z 21

e el e
_ 0 2 gl kl ~ — =
- _wo 0 é,z + kz W(§1+V1f§,~)'

Thus, the system is formulated into the isolated
equations of the principal terms and higher-order terms

(10)

dlz| =
E z, _f(t3219227§,~), (lla)
%ZZ\z-i-g(t,zl,zz,a), (11b)

where the nonlinear parts fand g are respectively defined
as

_|kcosat—k,sinot| [ zcosot+
S = [kl sin @, + k, cos a)ot} v (zz sinw t+v.¢ j ’
k3
L[ zcosar+
£ k l//(zz sina)ot+7”5rj'

n

3. Stability Criterion

Section 2 has shown that the system formulation is
replaced via several basic transformations. In this section,
three lemmas and one theorem that argue against the
stability criterion are presented. In the first lemma, the
system equation is modified into an equivalent form using
the periodic averaging method. Particularly, the describing
function representation is derived via the averaging
technique. The second lemma states that the stability
problem in Section 2 can be converted into a local stability
problem of equilibrium at the interconnected ordinary
differential equation. The final theorem provides a
sufficient condition for the asymptotic stability of the

sinusoidal limit cycle by taking advantage of the former
two lemmas and an additional lemma.

[Lemma 1]

Consider the system equation in (11) and assume that f
and g are T-periodic, Lipschitz continuous, and bounded.
Using the periodic averaging method, the system in (11)
can be rearranged into the interconnected system equations
composed of linear averaged and nonlinear perturbed parts.
The periodic averaging induces the describing function
formula in the system equation.

Proof) For nonlinear periodic systems, the averaging
method is reported as a proper approximation of the
original system preserving the stability property [11].
Because f'is T-periodic, smooth, and bounded, an averaged
term can be isolated from the nonlinear equation using the
periodic averaging method. The method begins by isolating
the higher-order terms in the periodic system equation:

fGoz) = [ f22.0 (12)

Then, the error residual from the averaged function is
given as

E(t,7,2) = [[[f(57,2,0)= f,(z,2)Mds . (13)

Clearly, the error function £E(2,z,,z,) is T-periodic from
(12) and (13). A new variable is then defined

z=x+E(,x),

where z:=[z, z,]", x=[x, x,]', and E(t,x):=[E(t,x)
E,(t,x)]" . Differentiating each side yields

d| z X, dx
— =D +D E(t,x)+D E(t,x)—. 14
dt[zj ’Lj E(t,2)+D.Et,x) dt (14

where D, denotes a partial derivative operator. Using (13)
and (14), (11-a) is rearranged into

%|:j:|:f(tszlszz$5)

2

dx dx
=—+DFE—+ f(t,x,0)—
o TPES S(t,x,0) = f,(x)

+D,Ef,(x) = D,Ef,(x).

Finally, the averaged system is given as

dx =
E_f;(x)—i_fi(t’x’é’r)a (15)
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where

ft.x,C)=[1+D.E'[f(t,x+E,{)
—f(t,x,O)—Dfog(x)] ’

In deriving f, (¢, x, é_',) , note that the existence condition
for the inverse of I+D,E is (1+D E)1+D_E,)-
D _E -D E,#0. The first term in the right-hand side of
(15) represents the averaged equation and behaves as a
dominant factor in determining the stability property. To
obtain the averaged term in (15), consider (12) again in
order to compute f,(x):

@ =[] 160

where

k, cosa,t -
kysinegt )| _(x cosayt+
S(t,x,0)= (16)

k, sin oyt + X, sinawyt
k, cosa,t
Note that the definition of sinusoidal input describing

function is restated as the following equation for a sinusoid
signal input rcos(6 +a) :

L e (rcos(8 +a))dd = ¥ (e
2790 2

From the above equation, the following equations can be
obtained:

L_[2” cos él/?(r cos(8 + ))d6 = i‘i’(r) cosa (17a)
27 90 2

L j 7 sin Gy (r cos(@ + ))dd = — ¥ (r)sina (17b)
27 J0 2

Using (16) and (17), the first term of the averaged
equation can be found as follows

f.(x)= %Jj[kl cos @t —k, sin w,t]x

W (x, cos w,t + x, sin a,t)dt
1 JM k, cos 0y (r cos(0 + ) — 0 (18a)
27290 |k, sin Oy (rcos(6 + ax))

J 1, =
:Equj(r)xl —Ekz‘P(r)xz.
For simplification, the relationships of X, =rcos(—«)

and x, =rsin(—a) are applied. Similarly, the second term
is given as
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f,(x)= %J‘Or[k2 cos wt + k, sin w,t]

W (x, cos ,t + x, sin w,t)dt

_ 1 g k, sin Oy (rcos(f +a)) + K
2w | k,cos 91/7(}’ cos(0 + a))

(18b)

1, & 1, =
= Ekﬂ’(i’)xl +Ekl‘11(r)xz.

From the above results, the averaged term can be re-
arranged as

_ fol(x) _l~ kl _kz X
Ji,(x)—[ﬁz(x)}—zﬁ’(r)[kz K }LJ. (19)

Thus, the system in (11) is converted into the following
isolated equations containing the describing function
representation of the nonlinearity:

dx 1~ kl _kz X -
Eza\}l(r)|:kz k] :||:x2:|+f1(t:x’é,r)s (203')
d;; ~=AS +g(t,x,<) (20b) Q.E.D.

According to Lemma 1, the system equation is modified
into a linear perturbed form that includes the describing
function via the periodic averaging process. Lemma 2
claims that the stability of sinusoidal limit cycle in (3)
turns out to be equivalent with the local stability problem
around origin in (20).

[Lemma 2]

Assume the conditions in Lemma 1. The stability of the
sinusoidal limit cycle with respect to the system equation
y=—Gy(y) givgn in Fig. 1 is equivalent to the local
stability of (67,4,)=(0,0) in R'x R"? with respect to
the following differential equations:

daii’ =c(r)5r+ f(t,6r,C.) (21a)
ﬁ:[\f}ﬁg(t,ﬁr,a) 21b)
dt
where c(rg)::kl_zrﬂ.%

Proof) The system equation in Fig. 1 has been developed
into (20). Noting that the state variables representing the
principal term can be transformed into radius and phase of
sinusoidal limit cycle, X, and X, are represented as

x, =rsinf,x, =rcosf.
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The time derivatives are given as

ﬁ zﬂsin¢9+rcosﬁﬁ ,
dt dt
dx, dr

—+=—cosf+rsin 49(—&) .
dt dt dt

Because the following relationships hold,

ﬂsint9+&cost9 :ﬂ,
dt dt dt
ﬂcos6’—&sin9 = rﬁ,
dt dt dt

the coordinate can be transformed into a polar form, which
yields the following equations:

dr dx, dx,
— — X +—=X,
dr |_1| dt dt (22)
do | r|dx dx,
r— — X, ——=X,
dt dt dt

By applying (15) and (19) into (22), systems (15) and
(11-b) are depicted by the interconnected ordinary
differential equations:

ﬂ =sin 9%+cos 6’ﬂ

dt dt dt

¥ (r)
2

¥(r)
2

=sinfd

[kx, —k,x,]+sin@f, ()
(23a)
+cosé

[k, x, +k,x ]+ cosOf, ()

_¥()

kr+sin@f, ()+coséf, (),

40 = l[—sin 0ﬁ+ cos 19%]
. r dt dt

_ cos@ Y (r) ex, — ]+ cos@

r 2 r

_sinH‘i’(r)[kx k]
r 17%2 271 r
-0+ Leos0, 0 -sin 01,
r
af, > =
dt _A§r+gl(taxaé/;»):

fll()

23b
: sin @ (23b)

5.0

(23¢)

where f; and f, are the first and second terms of f; in (15),
respectively. Because the stability of sinusoidal limit cycle
of amplitude 7, (with additional information of @) is of
interest, the case of concern is to inspect the stability of the
equilibrium at ¥ =7, and ¢, =0 with an arbitrary phase
angle @<€[0,27) with the given system in (23).

Noting that ¥(r) is zero when r=r7,, reconsider the
system in (23). Setting 7 =7, +Or and extending equation
via the Taylor series around 7, converts (23-a) to

dsr _kr, 0¥ ()|
dt 2 or

Sr+ f(t,6r,C) (24a)

r=

where f(t,6r,C.) is the sum of sin@- f;,(-)+cos@- f,,(-)
in (23-a) and higher-order perturbation is generated from
the Taylor series representation of W(r)k,»/2 around r,.
The equation for higher-order residuals is given as follows:

98, A7 v z0.0r.F
—r=AL +2(.0r.0).

(24b) Q.E.D

Note that, to determine the stability of the limit cycle,
one only needs to show that (24) is stable. This is because
the factored-out phase term can be neglected. Using
Lemmas | and 2, the following theorem argues against a
sufficient condition investigating the stability of sinusoidal
limit cycle in (21).

[Theorem 1]

Consider the nonlinear feedback system in Fig. 1.
Assume that the plant and nonlinearity are Lipschitz
continuous and bounded. Assume also that there exists a
sinusoidal limit cycle whose amplitude and frequency pair
is (r,,). If ¢(r,)<0, A is Hurwitz and S is an M
matrix,

SZI S22

SII SIZ
det(S):de‘{ }>0,
whose entries are given as

sy =—c(r,)—[Az&,6; +AELDXE +&,]

S, =—AgE,

sy =[N 612+ w0 —c.
i=3

)'gz >

2 =~ R TR T2 90 =) |
i=3

where &, &, &, A;, Loz, and &, are arbitrary small
constants that can be obtained from the continuity and
bound condition of f and &, then the equilibrium
(0r,,)=(0,0) in R'xR"? is locally asymptotically
stable. In other words, the approximated sinusoidal limit
cycle is orbit asymptotically stable.

In the proof of Theorem 1, a lemma introducing an M
matrix property is required.

[Lemma 3]

There exists a positive diagonal D, such that
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DS+8"D >0 ifandonlyifSis an M matrix. In short, the
leading principal minors of S are positive.
Proof) [18]

Proof of Theorem 1) Following the results of Lemmas 1
and 2, one only needs to verify that (24) is asymptotically
stable around (07,4,)=(0,0) for the proof. The local
stability problem can be argued by applying a composite
Lyapunov function to the interconnected nonlinear system
of (24).

For simplicity, a new state vector is defined as
u=[6r .1 . Because k7, D,!/7|,b <0 and A js Hurwitz,
the Lyapunov functions ¥, =—&7° and V,=—¢¢, can
be chosen for each unperturbecl2 system. In addi’%on, certain
positive constant pair (¢, , ) and positive continuous

function (¢, ) can be found such that

Pty <-ag’w)
ot Ou,
(25a)
ov.
— < Bdu)
Ou,

for each unperturbed subsystem u, = f;(¢,u,). Using only
the unperturbed part of (21) and each Lyapunov function
Vi and; Ve, o= —CQ’ ), dw)=5|, B =1 a=
o (N, &,(11) =||§,,(“, and B, =1 can be obtained. In
addition, from the Lipschitz continuity and boundedness of
the plant and nonlinearity, some non-negative 7;'S are
found, such that

Je.t]| < 37,6, w) (25b)

for the given #;'s . In fact, noting that the smooth
functions f and & are bounded in a local neighborhood
around the equilibrium, and using the relationships of (23),
(24), and (11), the following inequalities hold around the
equilibrium:

[7]<11
<[A, &6, + AELD‘E + 50]”@ || +A,¢ "g:, "

lal< [So[k [ Te, + e .
j=3

where each upper bound is derived from perturbation terms
and consequently constitutes 7;'s [21]. A composite
Lyapunov candidate for the entire system in (24) can now
be defined as

(26a)

o

r

e 5 |+ 5D - @6y

V=wl+wV,. (27

Using (25) and (27), the time derivative of } along the

trajectories of the interconnected system (24) satisfies

dv(t,x) _

1 T T
i —5¢ WS+S"W)¢ (28)

where
¢ = [¢17¢2]Ta W= diag(wwwz)

and where s; (i.e., the ij™ element of S) is given as

5 = ai_ﬂi%'m i=j
T B, ir)

From Lemma 3, note that WS+S'W is positive
definite because S is an M matrix and W is a positive
diagonal matrix. Thus, ¥ in (27) becomes the Lyapunov
function of (24), which guarantees local stability of origin.
Finally, following the results of Lemmas 1 and 2, a
sinusoidal limit cycle with respect to (3) is asymptotically
stable. Q.E.D

Note that the linear growth bound condition is essential
in developing the Lyapunov-based stability analysis.
Moreover, the smoothness condition of functions, / and
g, is natural in that a typical differential equation in many
practices is assumed to satisfy the local Lipschitz
continuity for the existence and uniqueness of the solution.
This assumption can be further removed by developing the
boundedness and piecewise continuity condition of the
plant and feedback nonlinearity.

[Remark] Theorem 1 provides an extended result for
stability test criterion from the quasi-static method. In
practical application, the conditions that c¢(7,) <0 and A
is Hurwitz can be intuitively used to determine the steady-
state limit cycle’s stability, which is equivalent to the quasi-
static analysis result via the Loeb criterion.

4. Conclusion and Discussion

The current paper presents a state-space result for the
assumed stability of a limit cycle by solving the harmonic
balance. Through a series of proper transformations and
simplification, a relatively simple criterion that argues
against the limit cycle’s orbital stability is presented.
Because the stability criterion is presented using linear
system theory, an explicit procedure can be expected for
the nonlinear loop analysis or synthesis compared with
complex methodologies from mathematical theory.
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