• Title/Summary/Keyword: operator matrix

Search Result 213, Processing Time 0.022 seconds

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.

LINEAR OPERATORS THAT PRESERVE SETS OF PRIMITIVE MATRICES

  • Beasley, Leroy B.;Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.773-789
    • /
    • 2014
  • We consider linear operators on square matrices over antinegative semirings. Let ${\varepsilon}_k$ denote the set of all primitive matrices of exponent k. We characterize those linear operators which preserve the set ${\varepsilon}_1$ and the set ${\varepsilon}_2$, and those that preserve the set ${\varepsilon}_{n^2-2n+2}$ and the set ${\varepsilon}_{n^2-2n+1}$. We also characterize those linear operators that strongly preserve ${\varepsilon}_2$, ${\varepsilon}_{n^2-2n+2}$ or ${\varepsilon}_{n^2-2n+1}$.

A Study on the Vibration Characteristics of Nonuniform Cross Section Propeller Blade (비균일 단면 외팔보형 프로펠러 날개의 진동특성에 관한 연구)

  • Chung, In-sung;Chae, Hee-chang;Park, Tae-won;Kim, Kyoung-mo;Lee, Kee-hyung;Lee, Hwan-sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.97-107
    • /
    • 1994
  • The method is presented for determining the free vibration characteristics of a rotating blade having nonuniform spanwise properties and cantilever boundary condition. The equations which govern the coupled flapwise, chordwise and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equation of motion in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary condition, the equations are formulated into an eigenvalue problem whose solution may be determined by conventional method. Computed results are compared with experimental data.

  • PDF

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator (인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안)

  • Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, novel approximate form of the square-root operator of three dimensional acoustic Parabolic Equation (3D PE) is proposed using a rational approximant for two variables. This form has two advantages in comparison with existing approximation studies of the square-root operator. One is the wide-angle capability. The proposed form has wider angle accuracy to the inclination angle of ${\pm}62^{\circ}$ from the range axis of 3D PE at the bearing angle of $45^{\circ}$, which is approximately three times the angle limit of the existing 3D PE algorithm. Another is that the denominator of our approximate form can be expressed into the product of one-dimensional operators for depth and cross-range. Such a splitting form is very preferable in the numerical analysis in that the 3D PE can be easily transformed into the tridiagonal matrix equation. To confirm the capability of the proposed approximate form, comparative study of other approximation methods is conducted based on the phase error analysis, and the proposed method shows best performance.

WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Kim, Yong-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1029-1036
    • /
    • 1997
  • Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

  • PDF

LINEAR OPERATORS PRESERVING MAXIMAL COLUMN RANKS OF NONNEGATIVE REAL MATRICES

  • Kang, Kyung-Tae;Kim, Duk-Sun;Lee, Sang-Gu;Seol, Han-Guk
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.101-114
    • /
    • 2007
  • For an $m$ by $n$ nonnegative real matrix A, the maximal column rank of A is the maximal number of the columns of A which are linearly independent. In this paper, we analyze relationships between ranks and maximal column ranks of matrices over nonnegative reals. We also characterize the linear operators which preserve the maximal column rank of matrices over nonnegative reals.

  • PDF

Linear operators that preserve spanning column ranks of nonnegative matrices

  • Hwang, Suk-Geun;Kim, Si-Ju;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.645-657
    • /
    • 1994
  • If S is a semiring of nonnegative reals, which linear operators T on the space of $m \times n$ matrices over S preserve the column rank of each matrix\ulcorner Evidently if P and Q are invertible matrices whose inverses have entries in S, then $T : X \longrightarrow PXQ$ is a column rank preserving, linear operator. Beasley and Song obtained some characterizations of column rank preserving linear operators on the space of $m \times n$ matrices over $Z_+$, the semiring of nonnegative integers in [1] and over the binary Boolean algebra in [7] and [8]. In [4], Beasley, Gregory and Pullman obtained characterizations of semiring rank-1 matrices and semiring rank preserving operators over certain semirings of the nonnegative reals. We considers over certain semirings of the nonnegative reals. We consider some results in [4] in view of a certain column rank instead of semiring rank.

  • PDF

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.