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LINEAR OPERATORS THAT PRESERVE SETS OF

PRIMITIVE MATRICES

LeRoy B. Beasley, Kyung-Tae Kang, and Seok-Zun Song

Abstract. We consider linear operators on square matrices over antineg-
ative semirings. Let E

k
denote the set of all primitive matrices of expo-

nent k. We characterize those linear operators which preserve the set
E1 and the set E2, and those that preserve the set E

n
2−2n+2 and the

set E
n
2−2n+1. We also characterize those linear operators that strongly

preserve E2, En2−2n+2 or E
n
2−2n+1.

1. Introduction

The characterization of linear operators on vector space of matrices which
leave functions, sets or relations invariant began over a century ago when in
1897 Fröbenius [9] characterized the linear operators that leave the determi-
nant function invariant. Since then, several researchers have investigated the
preservers of nearly every function, set and relation on matrices over fields. See
[12, 14] for an excellent survey of preserver problems through 2001.

In the 1980’s research began on linear preserver problems over semirings, in
particular linear operators on spaces of (0, 1)-matrices. (See for example [3].)
Many functions, sets and relations concerning matrices do not depend upon the
magnitude or nature of the individual entries of a matrix, but rather only on
whether the entry is zero or nonzero. These combinatorially significant matrices
have become increasingly important in recent years. Primitive matrices are an
example of this type of combinatorially significant set of matrices.

To begin the investigation concerning the present article, we define an an-
tinegative semiring.

Let S be a commutative semiring, that is: S is a set with two binary opera-
tions, addition (+) and multiplication (·); there is a zero element (for addition)
and an identity element (for multiplication) in S; (S,+) is closed, commutative
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and associative, but may not have additive inverses, except for the zero; (S, ·) is
closed, associative and commutative, but may not have multiplicative inverses,
except for the identity; and the distributive laws hold. We only consider semi-
rings which have no zero divisors, that is nonzero elements, s, for which there
is some nonzero element, t in S such that st = 0. Of particular interest in this
article, is the binary Boolean algebra, B = {0, 1} with the usual addition and
multiplication, except that 1 + 1 = 1. A semiring is antinegative if the only
element with an additive inverse is the zero element.

In this article we only consider commutative antinegative semirings with
no zero divisors, the reason is that primitivity is not well defined for other
semirings. Antinegative semirings of special interest to us include Z+,Q+,R+

(the nonegative integers, rationals and reals, resp.), the fuzzy semiring F =
[0, 1] with maximum for addition and minimum for multiplication, and chain
semirings, including the binary Boolean algebra B.

Let Mn(S) denote the set of all n×n matrices with entries in S. Let M
(0)
n (S)

denote those members of Mn(S) with all zeros on the main diagonal. Let In
denote the identity matrix, Jn denote the matrix of all ones and On denote
the zero matrix. Further, letKn = Jn \In, the n×n matrix with all diagonal
entries zero and all off diagonal entries one. The subscripts are usually omitted
as the order is usually obvious from the context, and we write I,J,O and K.
Let Ei,j denote the matrix in Mn(S) that has only one nonzero entry, that
being a “1” in the (i, j) location. Such a matrix is called a cell.

A matrix L ∈ Mn(S) is called a line matrix if L =
∑n

l=1 Ei,l or L =
∑n

s=1 Es,j for some i ∈ {1, . . . , n} or for some j ∈ {1, . . . , n}; Ri =
∑n

l=1 Ei,l

is the ith row matrix and Cj =
∑n

s=1 Es,j is the jth column matrix. A matrix
in Mn(S) is a double star if it is a sum of a row matrix and a column matrix
which share a diagonal entry. That is, Dk = Rk + Ck is a double star for all
k = 1, . . . , n.

Suppose that A,B ∈ Mn(S). We say that A dominates B (written A ⊒ B
or B ⊑ A) if ai,j = 0 implies that bi,j = 0 for all i and j. If A ⊒ B we write
A\B = C to denote the matrix with ci,j = ai,j if bi,j = 0 and ci,j = 0 if bi,j 6= 0.
Let A ◦B denote the Hadamard product of A and B, that is A ◦B = [ai,jbi,j].

Note that if X ∈ Mn(S) then X ◦K ∈ M
(0)
n (S).

The matrix A ∈ Mn(S) is said to be primitive if Al has all nonzero entries for
some positive integer l. A primitive matrixA is said to have exponent k ifAk has
all nonzero entries and As has a zero entry if s < k. That is, k is the minimum
exponent of A that produces a strictly nonzero matrix, denoted exp(A). For
notational convenience, we say that the exponent of a non-primitive matrix is
zero. Let Ek = {A ∈ Mn(S) : exp(A) = k}. So E0 is the set of non-primitive
matrices, and further, E1 = {A ∈ Mn(S) : J ⊑ A}.

Primitive matrices appear in many physical models. The study of the ex-
ponents of primitive matrices began in 1950 when Wielandt published the first
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upper bound on the exponent of a primitive matrix [15]. The study of ex-
ponents of primitive matrices has been an active area of research by several
authors, including Dulmadge and Mendelsohn [8], Lewin and Vitek [11], Hol-
laday and R. S. Varga [10], and more recently by Liu [13], to name only a
few.

Let T : Mn(S) → Mn(S) be an operator. Then, T is said to be linear

if T (αA + βB) = αT (A) + βT (B) for all A,B ∈ Mn(S) and α, β ∈ S. For
permutation matrices, P and Q in Mn(S), T is said to be a (P,Q)-operator
if T (X) = PXQ for all X , or T (X) = PXtQ for all X where Xt denotes the
transpose of X . Further, T is said to be a (P, P t)-operator if T (X) = PXP t

for all X , or T (X) = PXtP t for all X . A linear operator T is singular if
there is some nonzero X such that T (X) = O. Otherwise, T is nonsingular.
Note that over antinegative semirings, a linear operator being nonsingular is
not equivalent to being invertible, for example if A ∈ Mn(B), A 6= O, and
T : Mn(B) → Mn(B) is a linear operator such that T (X) = A for all nonzero
X , then T is nonsingular, but obviously not invertible.

Let Φ be a subset of Mn(S). We say that T preserves Φ if X ∈ Φ implies
that T (X) ∈ Φ. Further, T strongly preserves Φ if, X ∈ Φ if and only if
T (X) ∈ Φ.

In 1989 Beasley and Pullman [5] characterized the linear operators that
strongly preserve the set of primitive matrices. They also characterized the
linear operators that preserve the index of imprimitivity [6]. Recently Beasley
and Guterman have characterized the linear operators that preserve sets of
tuples that generalize the concept of primitivity, [1, 2]. In this article we
investigate preservers of certain subsets of primitive matrices defined by their
exponent. In particular, we shall characterize linear operators that preserve E1
and E2, and those that preserve En2

−2n+2 and En2
−2n+1. We also characterize

those linear operators that strongly preserve E2, En2
−2n+2, or En2

−2n+1.
Let A = [ai,j ] ∈ Mn(S). The support of A, A = [ai,j ], is the element

of Mn(B) whose entries equal to 1 are in precisely the locations that A has
nonzero entries. That is ai,j = 1 if and only if ai,j 6= 0 for all i and j. Since
S is antinegative, a matrix being primitive does not depend on the nature of
the nonzero entries of A. Thus, A is primitive in Mn(S) if and only if A is
primitive in Mn(B). For a linear operator T : Mn(S) → Mn(S) we define

the corresponding operator T : Mn(B) → Mn(B) by T (X) = T (X) for all
X ∈ Mn(S). Let Ek be the subset of Mn(B) of primitive matrices of exponent
k. Then, T (strongly) preserves Ek if and only if T (strongly) preserves Ek. For
that reason, we restrict our attention in the next section to linear operators on
Mn(B).

2. Exponent preservers on Mn(B)

In this section, we consider only linear operators on Mn(B) or M
(0)
n (B),

and will not use the notation A since for A in Mn(B) or M
(0)
n (B), A = A.
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Further, we assume that n ≥ 3 since the main theorem is false when n = 2 as
the following example shows.

Example 2.1. Let T : M2(B) → M2(B) be defined by T (E1,1) = E1,1 +
E1,2, T (E1,2) = O, T (E2,1) = E2,1 and T (E2,2) = E2,2+E1,2. Then T preserves
E1 and E2, but clearly T is singular, and hence, not a (P, P t)-operator.

Note that the lemma below may be found in previous literature (see for
example [4, Theorem 5.3]) in different formats. The proofs are included here
for completeness.

Lemma 2.2. Let T : Mn(B) → Mn(B) be a bijective linear operator. Then T
maps line matrices to line matrices if and only if T is a (P,Q)-operator.

Proof. Since T is bijective, T (Jn) = Jn. Let T map line matrices to line
matrices. Now we claim that either

(1) T maps {R1, . . . , Rn} onto {R1, . . . , Rn} and maps {C1, . . . , Cn} onto
{C1, . . . , Cn}, or

(2) T maps {R1, . . . , Rn} onto {C1, . . . , Cn} and maps {C1, . . . , Cn} onto
{R1, . . . , Rn}.

Suppose that the claim is not true. Then there are two distinct row matrices
Ri and Rj (or column matrices Ci and Cj) such that T (Ri) is a row matrix
and T (Rj) is a column matrix. But then T (Jn) = T (R1) + · · ·+ T (Ri) + · · ·+
T (Rj)+· · ·+T (Rn) cannot dominate Jn. This contradicts T (Jn) = Jn. Hence
the claim is true.

Case (1): We note that T (Ri) = Rα(i) for all i and T (Cj) = Cβ(j) for all j,
where α and β are permutations of {1, . . . , n}. Then for any cell Ei,j , we have
T (Ei,j) = Eα(i),β(j). Let P and Q be the permutation matrices corresponding

to α and β, respectively. Then for any matrix X =
n
∑

i=1

n
∑

j=1

xi,jEi,j ∈ Mn(B),

we have

T (X) =

n
∑

i=1

n
∑

j=1

xi,jEα(i),β(j) = PXQ.

Hence T is a (P,Q)-operator.

Case (2): T (Ri) = Cα(i) for all i and T (Cj) = Rβ(j) for all j, where α and
β are permutations of {1, . . . , n}. By a parallel argument similar to Case (1),
we obtain that T (X) is of the form T (X) = PXtQ, and thus T is a (P,Q)-
operator.

The converse is obvious. �

Lemma 2.3. Let T : Mn(B) → Mn(B) be a bijective linear operator. Then,

T maps line matrices to line matrices and double stars to double stars if and

only if T is a (P, P t)-operator.



PRIMITIVE MATRIX PRESERVERS 777

Proof. Suppose that T maps line matrices to line matrices and double stars to
double stars. By Lemma 2.2, T is a (P,Q)-operator. The permutations α and
β defined in the proof of Lemma 2.2 must be equal since T maps double stars
to double stars. Thus Q = P t, and hence T is a (P, P t)-operator.

The converse is obvious. �

For a line matrix L, we say that L(0) = L \E is an off diagonal line matrix,

where E is a diagonal cell with E ⊑ L. Further, D
(0)
k = Dk \ Ek,k is an off

diagonal double star for k = 1, . . . , n.

Noting that a (P, P t)-operator maps M
(0)
n (B) to M

(0)
n (B), the off diagonal

version of Lemma 2.2 is the following:

Lemma 2.4. Let T : M
(0)
n (B) → M

(0)
n (B) be a bijective linear operator. Then,

T maps off diagonal line matrices to off diagonal line matrices if and only if T
is a (P, P t)-operator.

Proof. Suppose that T maps off diagonal line matrices to off diagonal line
matrices. By Lemma 2.2, T is a (P,Q)-operator. If T does not map an off

diagonal double star D
(0)
k to an off diagonal double star, then there are distinct

indices i and j such that T (D
(0)
k ) = R

(0)
i +C

(0)
j . This contradicts the fact that

T is bijective since D
(0)
k is the sum of 2n− 2 cells and R

(0)
i + C

(0)
j is the sum

of 2n− 3 cells. Thus, T maps off diagonal double stars to off diagonal double
stars.

Now, by defining T ′ : Mn(B) → Mn(B) by T ′(Ei,i) = Ek,k if T (D
(0)
i ) =

D
(0)
k , we have that T ′ preserves line matrices and double stars and hence,

by Lemma 2.3, T ′ is a (P, P t)-operator. By considering the mapping X →
P (X ◦K)P t, we can see that T is a (P, P t)-operator.

The converse is obvious. �

Theorem 2.5. Let n ≥ 3 and T : Mn(B) → Mn(B) be a linear operator.

Then, T preserves E1 and E2 if and only if T is a (P, P t)-operator.

Proof. If T is a (P, P t)-operator, clearly T preserves E1 and E2. Conversely
assume that T preserves E1 and E2. Then T (J) = J. If T (X) = O for
some nonzero X then there is a cell Ei,j such that T (Ei,j) = O. But then,
T (J) = T (J \Ei,j), a contradiction since for n ≥ 3, J \Ei,j ∈ E2 while J ∈ E1.
Thus, T is nonsingular.

Suppose that the image of some cell, E, is not a cell. Then, there are at
most n2−2 cells, E1, . . . , En2

−2, such that T (E)+T (E1)+ · · ·+T (En2
−2) = J,

but for n ≥ 3, E +E1 + · · ·+En2
−2 ∈ E2 while J ∈ E1, a contradiction. Thus,

the image of any cell is a cell. Further, since T (J) = J, it follows that T is
bijective on the set of cells.

It is easily shown that any matrix with exponent 2 with the minimum number
of nonzero entries is a double star, Dk = [di,j ], where di,j = 1 if and only if
i = k or j = k. Thus, T maps double stars to double stars. Suppose that T
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does not preserve line matrices. Then without loss of generality, we may assume
that the image of R1 is not a line matrix. But, by permuting, T (D1) = D1.
That is, T (R1 + C1) = R1 + C1, so that the preimage of R1, is a sum of some
cells dominated by R1 and some cells dominated by C1, other than E1,1. By

permuting, we may assume that the preimage of U =

[

1 0t
n−1

jn−1 Jn−1

]

is

V =





1 jtu 0t
n−u−1

0u Ju Ju,n−u−1

jn−u−1 Jn−u−1,u Jn−u−1,n−u−1



 ,

where Jα,β is the α × β matrix of all ones, and jγ is the column vector of all
ones of size γ. But V ∈ E2 while U ∈ E0, a contradiction. Thus, line matrices
are mapped into line matrices and double stars into double stars. By Lemma
2.3, T is a (P, P t)-operator. �

It is known that if A ∈ Mn(B) is primitive, then exp(A) ≤ n2 − 2n + 2,
and if exp(A) = n2 − 2n + 2, then A is permutationally equivalent to Wn =
E1,2 + E2,3 + · · · + En−1,n + En,1 + En−1,1, the Wielandt matrix. See [15]
or [7, Pages 82 & 83]. From [15], we also know that for n ≥ 4 the only
matrices whose exponents are n2 − 2n + 1 are permutationally equivalent to
W ′

n = E1,2+E2,3+ · · ·+En−1,n+En,1+En−1,1+En,2 so that W ′

n = Wn+En,2.
Thus, for n ≥ 3, if a matrix A in Mn(B) dominates a diagonal cell, then
A /∈ En2

−2n+2. If n ≥ 4 and a matrix A in Mn(B) dominates a diagonal cell,
then A /∈ En2

−2n+1. This shows the following:

Lemma 2.6. Let T : Mn(B) → Mn(B) be a linear operator and n ≥ 3. If T

preserves En2
−2n+2, or if n ≥ 4 and T preserves En2

−2n+1, then T (M
(0)
n (B)) ⊆

M
(0)
n (B).

Lemma 2.7. Let n ≥ 3 and T : M
(0)
n (B) → M

(0)
n (B) be a linear operator.

Then T preserves En2
−2n+1 and En2

−2n+2 if and only if T is a (P, P t)-operator.

Proof. Assume that T preserves En2
−2n+1 and En2

−2n+2. Suppose that there is
some off diagonal cell, E, such that T (E) =O. By permuting we may assume
that E = En,2. Then, Wn + E = W ′

n. But then, T (W ′

n) = T (Wn + E) =
T (Wn), a contradiction since Wn ∈ En2

−2n+2 while W ′

n ∈ En2
−2n+1. Hence T

is nonsingular. Now suppose that the image of an off diagonal cell, E, is not
an off diagonal cell. Then, T (E) must dominate at least two off diagonal cells.

Let L = T d where d is chosen so that L is idempotent. Since T (E) dominates
two cells, so does L(E). Then, we may assume that L(E) = F +X where F
is a cell with F 6= E. If E and F are collinear, we may permute and/or
transpose if necessary, so that E = En,1 and F = En,2. If E and F are not
collinear, we may permute and/or transpose if necessary, so that E = En−1,1

and F = En,2. Then, in either case, Wn ⊒ E and Wn + F = W ′

n. But then
L(Wn) = L(Wn+E) = L(Wn)+L(E) = L(Wn)+F+X . Since L is idempotent,
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we have that

L(Wn) = L2(Wn) = L(L(Wn) + F +X)

= L(L(Wn) + F +X + F )

= L(L(Wn) + F ) = L(Wn) + L(F )

= L(Wn + F ) = L(W ′

n),

a contradiction since T , and hence L, preserves En2
−2n+1 and En2

−2n+2. Thus,
T maps off diagonal cells to off diagonal cells.

If T is not bijective on the off diagonal cells then, say T (E) = T (F ) for
some off diagonal cells E and F . But, by permuting, we may assume that
W ′

n ⊒ E + F , so that, as above, Wn ⊒ E and W ′

n = Wn + F . But then,
T (W ′

n) = T (Wn + F ) = T (Wn) + T (F ) = T (Wn) + T (E) = T (Wn + E) =
T (Wn), a contradiction. Thus, T is bijective on the set of off diagonal cells.

Now, suppose that T does not preserve off diagonal line matrices. Then,
since T is bijective on the off diagonal cells, there are two noncollinear cells,
E and F , whose images are collinear. By permuting, we may assume that
Wn \En−1,1 ⊒ E+F , T (Wn) = Wn, and T (Wn \En−1,1) ⊒ En−1,1. But there
are at least n off diagonal cells G such that Wn \ En−1,1 + G has exponent
n2−2n+2 while there is only one off diagonal cell such that T (Wn\En−1,1)+G
has exponent n2 − 2n+ 2, a contradiction since T is bijective on the set of off
diagonal cells. Thus, T maps off diagonal line matrices to off diagonal line

matrices. By Lemma 2.4, T is a (P, P t)-operator on M
(0)
n (B).

The converse is obvious. �

Definition 2.8. Let ∆n denote the subset of Mn(S) consisting of the diagonal
matrices. That is, ∆n = {A ∈ Mn(S) : A ⊑ In}. A diagonal transformation is
any linear mapping R : ∆n → Mn(S).

Lemma 2.9. Let n ≥ 3, To : M
(0)
n (B) → M

(0)
n (B) be a linear operator and

R : ∆n → Mn(B) be any diagonal transformation. Let T : Mn(B) → Mn(B)
be a linear operator defined by T (X) = To(X◦K)+R(X◦I) for all X ∈ Mn(B).
Then, if To preserves En2

−2n+2 (resp., En2
−2n+1, n ≥ 4), then T does.

Proof. Notice that any matrix in En2
−2n+2 cannot dominate a diagonal cell.

Now, suppose that To preserves En2
−2n+2, and let A ∈ Mn(B) be any matrix

in En2
−2n+2. Then A ◦ I = O and so A ∈ M

(0)
n (B). Thus To(A) ∈ En2

−2n+2.
It follows from R(A ◦ I) = R(O) = O that T (A) = To(A ◦K) + R(A ◦ I) =
To(A) +O = To(A). Thus, T (A) ∈ En2

−2n+2. That is, T preserves En2
−2n+2.

The case of En2
−2n+1 with n ≥ 4 is parallel. �

Theorem 2.10. Let n ≥ 3 and T : Mn(B) → Mn(B) be a linear operator.

Then, T preserves En2
−2n+1 and En2

−2n+2 if and only if T is the sum of a

(P, P t)-operator on M
(0)
n (B) and a diagonal transformation R : ∆n → Mn(B).

That is, T (X) = P (X ◦K)P t+R(X ◦I) for all X, or T (X) = P (X ◦K)tP t+
R(X ◦ I) for all X.
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Proof. Suppose that T preserves En2
−2n+1 and En2

−2n+2. By Lemma 2.6, we

can define a linear operator To : M
(0)
n (B) → M

(0)
n (B) by To(Y ) = T (Y ) for

all Y ∈ M
(0)
n (B). Clearly To preserves En2

−2n+1 and En2
−2n+2. Hence To is a

(P, P t)-operator on M
(0)
n (B) by Lemma 2.7. Define a diagonal transformation

R : ∆n → Mn(B) by R(Z) = T (Z) for all Z ∈ ∆n. Then we note that for any

X ∈ Mn(B), letting Y = X ◦K ∈ M
(0)
n (B) and Z = X ◦I ∈ ∆n, we have that

X = Y + Z and T (X) = T (Y ) + T (Z). Then, for all X ∈ Mn(B),

T (X) = T (X ◦K) + T (X ◦ I) = To(X ◦K) +R(X ◦ I).

Hence T is the sum of a (P, P t)-operator on M
(0)
n (B) and a diagonal transfor-

mation R.
The converse is obvious by Lemmas 2.7 and 2.9. �

Remark 2.11. Suppose that T : Mn(B) → Mn(B) is a linear operator that
preserves En2

−2n+1 and En2
−2n+2. Then T may not preserve E2. For example,

let R : ∆n → Mn(B) be a diagonal transformation defined by R(A) = I

for all nonzero A ∈ ∆n. Define a linear operator T : Mn(B) → Mn(B) by
T (X) = (X ◦K)+R(X ◦I) for all X . By Theorem 2.10, T preserves En2

−2n+1

and En2
−2n+2. But

T (J \ E1,1) = (K) + I = J,

and so T does not preserve E2 since exp(J \ E1,1) = 2 while exp(J) = 1.

3. Strong preservers of exponents on Mn(B)

Theorem 3.1. Let n ≥ 2 and T : Mn(B) → Mn(B) be a linear operator.

Then T strongly preserves E2 if and only if T is a (P, P t)-operator.

Proof. Let n = 2. Note that if A ∈ E2, then A is the sum of 3 cells and any
sum of 2 cells is not primitive.

Suppose T strongly preserves E2. If T (X) = O for some nonzero X , then
there is a cell, E, such that T (E) =O. In this case there are two cells, F and
G such that E + F + G ∈ E2, but then T (F + G) = T (E + F + G) ∈ E2, a
contradiction. Thus, T is nonsingular.

Now suppose that the image of a cell is not a cell. Then there is a cell E
such that T (E) dominates at least two cells. Then there are cells F and G such
that E + F + G ∈ E2. But then, either T (E + F ) or T (E + G) dominates 3
cells, and hence equals T (E + F +G) and so is in E2, a contradiction.

Suppose that T (E) = T (F ) for some distinct cells E and F . Let G and H
be cells such that E + F + G + H = J2. Now, at least one of E + G + H ,
F + G + H , E + F + G, or E + F + H is in E2. If E + G + H ∈ E2, then
T (J2) ∈ E2, a contradiction; if F+G+H ∈ E2, then T (J2) ∈ E2, a contradiction;
if E + F +G ∈ E2, then T (E +G) = T (E + F +G) ∈ E2, a contradiction; and
if E + F +H ∈ E2, then T (E +H) = T (E + F +H) ∈ E2, a contradiction. In
any case we have a contradiction and hence, T is bijective.
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Since T is bijective, and T strongly preserves E2, T preserves E1. Since the
two double stars are the only members of E2, T preserves double stars. Also, it
is easy to show that T preserves lines. By Lemma 2.3, T is a (P, P t)-operator.

Now, let n ≥ 3 and suppose T strongly preserves E2. If T (X) = O for
some nonzero X , then there is a cell, E, such that T (E) = O. In this case
T (J \ E) = T (J). But J /∈ E2 while J \ E ∈ E2, contradicting that T strongly
preserves E2. Thus, T is nonsingular.

Now suppose that the image of a cell is not a cell. Then there is a cell E such
that T (E) dominates at least two cells. Then, there are at most n2 − 1 cells
whose image dominates T (J). That is, there is a cell F such that T (J \ F ) =
T (J), again a contradiction. That is, the image of a cell is a cell.

Let E and F be distinct cells. Suppose that T (E) = T (F ), Then T (J) =
T (J \ (E + F )) + T (E) + T (F ). So, T (J \ E) = T (J), again a contradiction.
Thus, T is bijective on the set of cells, and hence, T (J) = J. That is, T
preserves E1. By Theorem 2.5, T is a (P, P t)-operator.

The converse is obvious. �

Definition 3.2. We define Wn to be the set of all matrices dominated by a ma-
trix of exponent n2−2n+2, that is, Wn = {A ∈ Mn(B) : A ⊑ B for some B ∈
En2

−2n+2}. Similarly we define W ′

n to be the set of all matrices dominated
by a matrix of exponent n2 − 2n + 1, that is, W ′

n = {A ∈ Mn(B) : A ⊑
B for some B ∈ En2

−2n+1}.

Remark 3.3. If X is a subset of Mn(B), let X c denote the complement of X ,
X c = Mn(B) \ X . Notice that ∆n ⊆ (Wn)

c and ∆n ⊆ (W ′

n)
c.

Lemma 3.4. Let n ≥ 3, To : M
(0)
n (B) → M

(0)
n (B) be a linear operator and

R : ∆n → Mn(B) be any diagonal transformation such that R(∆n) ⊆ (Wn)
c

(resp., (W ′

n)
c). Let T : Mn(B) → Mn(B) be a linear operator defined by

T (X) = To(X ◦K) + R(X ◦ I) for all X ∈ Mn(B). Then, if To strongly

preserves En2
−2n+2 (resp., En2

−2n+1), then T does.

Proof. Suppose that To strongly preserves En2
−2n+2 and R is a diagonal trans-

formation with R(∆n) ⊆ (Wn)
c. Then T preserves En2

−2n+2 by Lemma
2.9. Suppose that T (X) ∈ En2

−2n+2 for some X ∈ Mn(B). Then T (X) =
To(X ◦K) + R(X ◦ I) ∈ En2

−2n+2 and hence R(X ◦ I) ∈ Wn. But it follows
from R(∆n) ⊆ (Wn)

c that R(X ◦ I) is a member of the empty set. Hence X
cannot dominate a diagonal cell. But then T (X) = To(X ◦K) = To(X). Since
To strongly preserves En2

−2n+2, we have X ∈ En2
−2n+2. Hence T strongly

preserves En2
−2n+2.

The case for En2
−2n+1 and R(∆n) ⊆ (W ′

n)
c is parallel. �

Lemma 3.5. Let n ≥ 3 and T : M
(0)
n (B) → M

(0)
n (B) be a linear operator. If

T strongly preserves En2
−2n+2 or En2

−2n+1, then T is bijective.

Proof. Assume that T strongly preserves En2
−2n+2. If T (X) = O for some

nonzero X , then T (E) =O for some off diagonal cell E. Now choose a member
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U of En2
−2n+2 that dominates E. But then T (U \ E) = T (U), while U \ E /∈

En2
−2n+2, a contradiction since T strongly preserves En2

−2n+2. Hence T is
nonsingular.

Suppose that the image of an off diagonal cell, E, is not an off diagonal cell,
say T (E) ⊒ F +G for some off diagonal cells F and G. Since every member of
En2

−2n+2 has exactly n+1 nonzero entries, there is some member U of En2
−2n+2

that dominates E. But then T (U \H) = T (U), for some cell H dominated by
U . But U \H /∈ En2

−2n+2, a contradiction since T strongly preserves En2
−2n+2.

Thus, T maps off diagonal cells to off diagonal cells.
Suppose that T (E) = T (F ) for distinct off diagonal cells E and F . Extend

E + F to a member U of En2
−2n+2. But then T (U \ F ) = T (U), again a

contradiction. Hence T is bijective.
By similar argument as above, if T strongly preserves En2

−2n+1, then T is
bijective. �

Example 3.6. Let A ∈ M3(B) be a matrix of exponent n2 − 2n + 2 = 5.

Then A is permutationally equivalent to W3 =
[

0 1 0
1 0 1
1 0 0

]

. Notice that there

are only six matrices of exponent 5 in M3(B) and they are the following:
[

0 1 0
1 0 1
1 0 0

]

,
[

0 0 1
1 0 0
1 1 0

]

,
[

0 1 1
1 0 0
0 1 0

]

,
[

0 1 1
0 0 1
1 0 0

]

,
[

0 1 0
0 0 1
1 1 0

]

, and
[

0 0 1
1 0 1
0 1 0

]

.

Lemma 3.7. If T : M
(0)
3 (B) → M

(0)
3 (B) is a linear operator which strongly

preserves E5, then T maps off diagonal line matrices to off diagonal line ma-

trices.

Proof. By Lemma 3.5, T is bijective. Suppose that T does not map off diagonal
line matrices to off diagonal line matrices. Then, there is a pair of collinear off
diagonal cells whose images are not collinear. By permuting and/or transpos-
ing, we may assume that T (E1,2) = E1,2 and, T (E1,3) = E2,1 or T (E1,3) = E2,3.

Notice that there are exactly two choices of 2 cells whose sum with E1,2+E1,3

(resp., E1,2+E2,1) is in E5. But there are exactly three choices of 2 cells whose
sum with E1,2 + E2,3 is in E5. Since T is bijective and strongly preserves E5,

we must have T (E1,2) = E1,2 and T (E1,3) = E2,1. It follows from
[

0 1 1
1 0 0
0 1 0

]

∈ E5

that T (E2,1 + E3,2) = E2,3 + E3,1 or T (E2,1 + E3,2) = E1,3 + E3,2, say that
T (E2,1 +E3,2) = E2,3 +E3,1. But then we must have T (E2,3 +E3,1) = E1,3 +
E3,2. Further

T (W3) = T (E1,2 + E2,1 + E2,3 + E3,1) = E1,2 + T (E2,1) + E1,3 + E3,2

has exponent 5 so that T (E2,1) = E2,1, a contradiction since T (E2,1 +E3,2) =
E2,3 + E3,1. Hence T maps off diagonal line matrices to off diagonal line ma-
trices. �

Example 3.8. Let A ∈ M4(B) be a matrix of exponent n2 − 2n + 2 = 10.

Then A is s permutationally equivalent to W4 =

[

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

]

. Notice that there
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are only 24 matrices of exponent 10 in M4(B). Furthermore,

[

0 1 1 0
0 0 0 1
0 1 0 0
1 0 0 0

]

and
[

0 1 1 0
0 0 1 0
0 0 0 1
1 0 0 0

]

are the only two matrices in E10 that dominate E1,2 +E1,3. Similarly

there are only four matrices in E9 that dominate E1,2 + E1,3.

Lemma 3.9. Let T : M
(0)
4 (B) → M

(0)
4 (B) be a linear operator. If T strongly

preserves E10 or E9, then T maps off diagonal line matrices to off diagonal line

matrices.

Proof. By Lemma 3.5, T is bijective. Suppose that T does not map off diagonal
line matrices to off diagonal line matrices. Then, there is a pair of collinear off
diagonal cells whose images are not collinear. By permuting and/or transpos-
ing, we may assume that there are three cases to consider:

(1) T (E1,2) = E1,2 and T (E1,3) = E2,1;
(2) T (E1,2) = E1,2 and T (E1,3) = E2,3; or
(3) T (E1,2) = E1,2 and T (E1,3) = E3,4.

First, suppose that T strongly preserves E10. Notice that there are exactly
two choices of 3 cells whose sum together with E1,2 + E1,3 is in E10. In case
(1), there are not 3 cells whose sum with E1,2 + E2,1 is in E10, a contradiction
since T strongly preserves E10. In case (2), there are exactly six choices of 3
cells whose sum with E1,2 + E2,3 is in E10, a contradiction since T is bijective
and strongly preserves E10. In case (3), there are exactly four choices of 3 cells
whose sum with E1,2 + E3,4 is in E10, a contradiction since T is bijective and
strongly preserves E10. Thus, T maps off diagonal line matrices to off diagonal
line matrices.

Next, suppose that T strongly preserves E9. Notice that there are exactly
four choices of 4 cells whose sum together with E1,2 + E1,3 is in E9. In case
(1), there are not 4 cells whose sum with E1,2 + E2,1 is in E9, a contradiction
since T strongly preserves E9. In case (2), there are exactly eight choices of 4
cells whose sum with E1,2 + E2,3 is in E9, a contradiction since T is bijective
and strongly preserves E9. In case (3), there are exactly six choices of 4 cells
whose sum with E1,2 + E3,4 is in E9, a contradiction since T is bijective and
strongly preserves E9. Thus, T maps off diagonal line matrices to off diagonal
line matrices. �

Theorem 3.10. Let n ≥ 3 and T : Mn(B) → Mn(B) be a linear operator.

Then T strongly preserves En2
−2n+2 if and only if T is the sum of a (P, P t)-

operator on M
(0)
n (B) and a diagonal transformation R : ∆n → Mn(B) such

that R(∆n) ⊆ (Wn)
c. That is, T (X) = P (X ◦K)P t +R(X ◦ I) for all X, or

T (X) = P (X ◦K)tP t +R(X ◦ I) for all X.

Proof. Suppose that T strongly preserves En2
−2n+2. By Lemma 2.6, we can

define a linear operator To : M
(0)
n (B) → M

(0)
n (B) by To(Y ) = T (Y ) for all
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Y ∈ M
(0)
n (B). Clearly To strongly preserves En2

−2n+2 and hence To is bijective
by Lemma 3.5.

Now we claim that To maps off diagonal line matrices to off diagonal line
matrices. But, by Lemmas 3.7 and 3.9, we only consider the case of n ≥ 5.
If the claim is not true, then there are two collinear off diagonal cells whose
images are not collinear. By permuting and/or transposing, we may assume
that there are three cases to consider:

(1) To(E1,2) = E1,2 and To(E1,3) = E2,1;
(2) To(E1,2) = E1,2 and To(E1,3) = E2,3; or
(3) To(E1,2) = E1,2 and To(E1,3) = E3,4.

Notice that there are exactly 2·(n−3)! choices of n−1 cells whose sum together
with E1,2 + E1,3 is in En2

−2n+2. In case (1), there are not n − 1 cells whose
sum with E1,2+E2,1 is in En2

−2n+2, a contradiction since To strongly preserves
En2

−2n+2. In case (2), there are n ·(n−3)! choices of n−1 cells whose sum with
E1,2 + E2,3 is in En2

−2n+2. This contradicts that To is bijective and strongly
preserves En2

−2n+2. In case (3), there are (n− 3)! choices of n− 1 cells whose
sum with E1,2 + E3,4 is in En2

−2n+2. This contradicts that To is bijective and
strongly preserves En2

−2n+2.
Thus, To maps off diagonal line matrices to off diagonal line matrices. By

Lemma 2.4, To is a (P, P t)-operator so that To(Y ) = PY P t or To(Y ) = PY tP t

for all Y ∈ M
(0)
n (B). Now, we define a diagonal transformation R : ∆n →

Mn(B) by R(D) = T (D) for all D ∈ ∆n. Then we have T (X) = To(X ◦K) +
R(X ◦ I) for all X ∈ Mn(B). Hence T is the sum of a (P, P t)-operator on

M
(0)
n (B) and a diagonal transformation R.
Suppose that R(D) ∈ Wn for some nonzero D ∈ ∆n. Then there is a

member U of En2
−2n+2 such that R(D) ⊑ U . For the case of To(Y ) = PY P t,

we have that T (P tUP +D) = To(P
tUP ) +R(D ◦ I) = P (P tUP )P t +R(D) =

U + R(D) = U ∈ En2
−2n+2, a contradiction since P tUP + D /∈ En2

−2n+2.
Considering the matrix P tU tP +D, we also get a contradiction for the case of
To(Y ) = PY tP t. That is, R is a diagonal transformation such that R(∆n) ⊆
(Wn)

c.
The converse is obvious by Lemma 3.4. �

Theorem 3.11. Let T : Mn(B) → Mn(B) be a linear operator and n ≥ 4.
Then T strongly preserves En2

−2n+1 if and only if T is the sum of a (P, P t)-

operator on M
(0)
n (B) and a diagonal transformation R : ∆n → Mn(B) such

that R(∆n) ⊆ (W ′

n)
c. That is, T (X) = P (X ◦K)P t + R(X ◦ I) for all X, or

T (X) = P (X ◦K)tP t +R(X ◦ I) for all X.

Proof. Suppose that T strongly preserves En2
−2n+1. By Lemma 2.6, we can

define a linear operator To : M
(0)
n (B) → M

(0)
n (B) by To(Y ) = T (Y ) for all

Y ∈ M
(0)
n (B). Clearly To strongly preserves En2

−2n+1 and hence To is bijective
by Lemma 3.5.
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Now we claim that To maps off diagonal line matrices to off diagonal line
matrices. But, by Lemma 3.9, we only consider the case of n ≥ 5. If the claim
is not true, then there are two collinear off diagonal cells whose images are not
collinear. By permuting and/or transposing, we may assume that there are
three cases to consider:

(1) To(E1,2) = E1,2 and To(E1,3) = E2,1;
(2) To(E1,2) = E1,2 and To(E1,3) = E2,3; or
(3) To(E1,2) = E1,2 and To(E1,3) = E3,4.

Notice that there are exactly 4 · (n− 3)! choices of n cells whose sum together
with E1,2 + E1,3 is in En2

−2n+1. In case (1), there are not n cells whose sum
with E1,2 + E2,1 is in En2

−2n+1, a contradiction since To strongly preserves
En2

−2n+1. In case (2), there are n · (n − 3)! choices of n cells whose sum with
E1,2 + E2,3 is in En2

−2n+1. Since n ≥ 5, this contradicts that To is bijective
and strongly preserves En2

−2n+1. In case (3), there are (n − 3)! choices of n
cells whose sum with E1,2 + E3,4 is in En2

−2n+1. This contradicts that To is
bijective and strongly preserves En2

−2n+1.
Thus, To maps off diagonal line matrices to off diagonal line matrices. By

Lemma 2.4, To is a (P, P t)-operator so that To(Y ) = PY P t or To(Y ) = PY tP t

for all Y ∈ M
(0)
n (B). Now, we define a diagonal transformation R : ∆n →

Mn(B) by R(D) = T (D) for all D ∈ ∆n. Then we have T (X) = To(X ◦K) +
R(X ◦ I) for all X ∈ Mn(B). Hence T is the sum of a (P, P t)-operator on

M
(0)
n (B) and a diagonal transformation R.
Suppose that R(D) ∈ W ′

n for some nonzero D ∈ ∆n. Then there is a
member U of En2

−2n+1 such that R(D) ⊑ U . For the case of To(Y ) = PY P t,
we have that T (P tUP +D) = To(P

tUP ) +R(D ◦ I) = P (P tUP )P t +R(D) =
U + R(D) = U ∈ En2

−2n+1, a contradiction since P tUP + D /∈ En2
−2n+1.

Considering the matrix P tU tP +D, we also get a contradiction for the case of
To(Y ) = PY tP t. That is, R is a diagonal transformation such that R(∆n) ⊆
(W ′

n)
c.

The converse is obvious by Lemma 3.4. �

Remark 3.12. If n = 3, Theorem 3.11 may be not true. See Theorem 3.15.

In M3(B), let C3 =
[

0 1 0
0 0 1
1 0 0

]

and A ∈ M3(B) be a matrix of exponent

n2 − 2n + 1 = 4. Then A is permutationally equivalent to W ′

3 =
[

0 1 0
1 0 1
1 1 0

]

,

Ei,i + C3, or Ei,i + Ct
3 for some i. Further, we can easily check that every

matrix in M3(B) that is the sum of five off diagonal cells is of exponent 4,
equivalently, K \ E ∈ E4 for any off diagonal cell E.

Lemma 3.13. If T : M3(B) → M3(B) strongly preserves E4, then T is a

bijective linear operator such that T (I) = I.

Proof. Suppose that T (X) = O for some nonzero X . Then T (E) = O for
some cell E. If E = Ei,i then T (Ei,i + C3) = T (C3), a contradiction since
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Ei,i +C3 ∈ E4 and C3 /∈ E4. If E = Ei,j with i 6= j, then T (K \Ei,j) = T (K),
a contradiction since K \ Ei,j ∈ E4 and K /∈ E4. Thus T is nonsingular.

Suppose that the image of an off diagonal cell dominates a diagonal cell,
so that T (E) ⊒ Ei,i for some off diagonal cell E and for some i. Notice that
Ei,i +C3 and Ei,i +Ct

3 are only matrices in E4 dominate Ei,i. Let F,G and H
be distinct off diagonal cells different from E. Then T (K \ F ), T (K \G) and
T (K\H) are matrices in E4 that dominate Ei,i. Hence by the above, we assume
that T (K\F ) = T (K\G). But then T (K) = T ((K\F )+(K\G)) = T (K\F ),
a contradiction sinceK /∈ E4 andK \F ∈ E4. Hence we have established that

T (M
(0)
3 (B)) ⊆ M

(0)
3 (B).

Suppose that the image of an off diagonal cell dominates two off diagonal
cells. Then, T (K \ E) = T (K) for some off diagonal cell E, a contradiction.
Thus, the image of an off diagonal cell is an off diagonal cell.

Suppose that T (E) = T (F ) for some distinct off diagonal cells E and F .
Then, T (K\E) = T ((K\E)+F ) = T (K \E)+T (F ) = T (K \E)+T (E) =

T (K), a contradiction. Thus, T is injective on M
(0)
3 (B), and hence bijective

on M
(0)
3 (B) since M

(0)
3 (B) is finite.

Suppose now that T (Ei,i)◦I = O for some i. ThenK ⊒ T (Ei,i) so that there

is a matrix X ∈ M
(0)
3 (B) such that T (Ei,i) = X . If X =K then T (Ei,i+C3) =

K, a contradiction. Thus X 6=K so that there are off diagonal cells E and F
such that T (E) = F 6⊑ X . But then T ((K\E)+Ei,i) = (K\F )+X =K\F ,
a contradiction since K \ F ∈ E4 and (K \ E) + Ei,i /∈ E4. Thus we have that
T (Ei,i) ◦ I 6=O for all i.

If T (I) 6⊑ I, then there is a diagonal cell Ei,i such that T (Ei,i) ⊒ Eu,v for

some off diagonal cell Eu,v. Since T is bijective on M
(0)
3 (B), we assume that

T (C3) 6⊒ Eu,v. But then T (Ei,i + C3) must dominate a diagonal cell and at
least four off diagonal cells, a contradiction since there is no such matrix in E4.
Hence T (I) ⊑ I.

For some i, suppose that T (Ei,i) dominates two diagonal cells. Then T (Ei,i+
C3) dominates two diagonal cells, a contradiction. Thus T (Ei,i) is a diagonal
cell for all i. If T (Ei,i) = T (Ej,j) and i 6= j then T (Ej,j + Ei,i + C3) =
T (Ei,i + C3), a contradiction. Hence T is a bijection of ∆3, and consequently,
T is a bijection on M3(B) and T (I) = I. �

Definition 3.14. Let Γ1,Γ2 : M
(0)
3 (B) → M

(0)
3 (B) denote the linear operators

defined by

Γ1









0 a b
c 0 d
e f 0







 =





0 a c
b 0 d
e f 0





and

Γ2









0 a b
c 0 d
e f 0







 =





0 a f
b 0 e
d c 0



 .
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Theorem 3.15. Let T : M3(B) → M3(B) be a linear operator. Then T
strongly preserves E4 if and only if T is the sum of a permutation on ∆3, and

the composition of a (P, P t)-operator on M
(0)
3 (B) and possibly one or more of

the operators Γ1 and Γ2.

Proof. Suppose that T strongly preserves E4. By Lemma 3.13 T is bijective
and T (I) = I.

Let To : M
(0)
3 (B) → M

(0)
3 (B) be the restriction of T to M

(0)
3 (B). Suppose

that To maps two collinear off diagonal cells to two noncollinear off diagonal
cells. If the image of these two cells is dominated by C3 or Ct

3, then there is one
other cell together with a diagonal cell that must be in E4 since their image is,
a contradiction. Thus, say, without loss of generality, that To(E1,2 + E1,3) =
E1,2 +E2,1. In this case, it follows that To is permutationally equivalent to Γ1

or Γ2

The converse is established by an easy check that each of the operators
strongly preserves E4. �

4. Exponent preservers on Mn(S)

The fact that the primitivity of a matrix and its exponent do not depend
on the nature of the nonzero entries, only on the fact that they are nonzero,
gives that any linear operator T : Mn(S) → Mn(S) preserves some property of
primitive matrices if and only if T : Mn(B) → Mn(B) preserves that property
of primitive matrices. Thus we state without proof the following theorems that
will be a summary of the results of this paper:

Theorem 4.1. Let T : Mn(S) → Mn(S) be a linear operator and n ≥ 3. Then
the following are equivalent:

• T preserves the exponent of primitive matrices.

• T preserves E1 and E2.
• T strongly preserves E2.
• There are a permutation matrix P ∈ Mn(S) and a matrix B ∈ Mn(S)
with B = J such that T (X) = P (X ◦ B)P t for all X, or T (X) =
P (X ◦B)tP t for all X.

Theorem 4.2. Let T : Mn(S) → Mn(S) be a linear operator and n ≥ 3. Then
the following are equivalent:

• T preserves En2
−2n+1 and En2

−2n+2.

• There are a permutation matrix P ∈ Mn(S) and a matrix B ∈ Mn(S)
with B =K such that T (X) = P (X ◦ B)P t + R(X ◦ I) for all X, or

T (X) = P (X ◦B)tP t +R(X ◦I) for all X, where R : ∆n → Mn(S) is
any linear transformation.

Remark 4.3. By replacing B with S in Definition 3.2 we have that Wn is the
set of all matrices in Mn(S) which are dominated by a matrix of exponent
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n2 − 2n + 2. Similarly, W ′

n is the set of all matrices in Mn(S) which are
dominated by a matrix of exponent n2 − 2n+ 1.

Theorem 4.4. Let T : Mn(S) → Mn(S) be a linear operator and n ≥ 3. Then
the following are equivalent:

• T strongly preserves En2
−2n+2.

• There are a permutation matrix P ∈ Mn(S) and a matrix B ∈ Mn(S)
with B =K such that T (X) = P (X ◦ B)P t + R(X ◦ I) for all X, or

T (X) = P (X ◦B)tP t +R(X ◦I) for all X, where R : ∆n → Mn(S) is
any linear transformation such that R(∆n) ⊆ (Wn)

c.

Theorem 4.5. Let T : Mn(S) → Mn(S) be a linear operator and n ≥ 4. Then
the following are equivalent:

• T strongly preserves En2
−2n+1.

• There are a permutation matrix P ∈ Mn(S) and a matrix B ∈ Mn(S)
with B =K such that T (X) = P (X ◦ B)P t + R(X ◦ I) for all X, or

T (X) = P (X ◦B)tP t +R(X ◦I) for all X, where R : ∆n → Mn(S) is
any linear transformation such that R(∆n) ⊆ (W ′

n)
c.

Theorem 4.6. Let T : M3(S) → M3(S) be a linear operator. Then T strongly

preserves E4 if and only if T = LB +DB where LB(X) = L(X) ◦B where L :

M
(0)
3 (B) → M

(0)
3 (B) is the composition of a (P, P t)-operator and possibly one

or more of the operators Γ1, Γ2, and DB : ∆3 → ∆3 where DB(X) = D(X)◦B
where D is a permutation, for some B ∈ M3(S) with no zero entries.
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