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LINEAR OPERATORS PRESERVING MAXIMAL

COLUMN RANKS OF NONNEGATIVE REAL

MATRICES

KYUNG-TAE KANG, DUK-SUN KIM, SANG-GU LEE∗,
and HAN-GUK SEOL

Abstract. For an m by n nonnegative real matrix A, the maximal
column rank of A is the maximal number of the columns of A which
are linearly independent. In this paper, we analyze relationships be-
tween ranks and maximal column ranks of matrices over nonnegative
reals. We also characterize the linear operators which preserve the
maximal column rank of matrices over nonnegative reals.

1. Introduction

Much attention has been paid to the study of linear operators preserv-
ing the rank or maximal column rank of matrices over several semirings([1]-
[13]). Nonnegative matrices also have been the interesting subject of
research by many authors([3]-[5], [9]-[11]). In 1985, Beasley et al. [3]
obtained a characterization of the linear operators preserving the rank
of matrices over R+, the set of all nonnegative elements in the reals R.

In 1994, Hwang et al. [6] defined a maximal column rank of a ma-
trix over a semiring and compared it with rank. And they characterized
linear operators that preserve maximal column ranks of matrices over
Boolean algebra. But the analysis of maximal column ranks over R+

remains open until now. As a partial result, in 1998, Song [10] char-
acterized the linear operators that preserve maximal column ranks of
matrices over Z+, the set of all nonnegative integers.
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In this paper, we study the maximal column rank of matrices over R+.
Consequently, we analyze the relationship between ranks and maximal
column ranks of matrices over nonnegative reals. We also characterize
the linear operators preserving the maximal column rank of matrices
over R+.

2. Comparison of rank and maximal column rank of matrices
over the nonnegative reals

For nonnegative reals R+, we denote Mm,n(R+) as the set of m × n
matrices with entries in R+. Addition, scalar multiplication, and the
product of matrices are defined as if R+ were a field. Let A be a nonzero
element in Mm,n(R+). Then the rank [3] or factor rank, r(A), of A is
defined as the least integer k such that there exist m × k and k × n
matrices B and C with A = BC. The real rank of A will be denoted by
ρ(A) [3]. The rank of a zero matrix is zero. Also we can easily obtain
that

0 ≤ ρ(A) ≤ r(A) ≤ min(m,n), (2.1)

r(AB) ≤ min(r(A), r(B)) (2.2)

for all matrices A ∈Mm,n(R+) and B ∈Mn,p(R+).
Let S be a nonempty subset of (R+)n ≡Mn,1(R+). Then S is linearly

dependent if there exists x ∈ S such that x is a linear combination
of elements in S\{x}. Otherwise S is linearly independent. Thus an
independent set cannot contain a zero vector.

The maximal column rank, mc(A), of A ∈ Mm,n(R+) is the maxi-
mal number of the columns of A which are linearly independent. The
maximal column rank of a zero matrix is zero. It follows that

0 ≤ r(A) ≤ mc(A) ≤ n (2.3)

for all matrices A ∈Mm,n(R+).
The maximal column rank of a matrix may actually exceed its rank.

For an example, we consider a matrix

A =




a b 0 0
0 c d 0
0 0 e f


 ∈M3,4(R+), (2.4)

where a, b, c, d, e and f are nonzero elements in R+. Then example 2.5
(below) implies that r(A) = 3, but mc(A) = 4.
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Lemma 2.1. Let A be a matrix in Mm,n(R+) with min(m,n) ≥ 1.
Then we have that r(A) = 1 if and only if mc(A) = 1.

Proof. If r(A) = 1, then A can be factored as

A = b [ c1 c2 · · · cn ] = [ c1b, c2b, · · · , cnb ],

where b is an m× 1 matrix and [ c1 c2 · · · cn ] is a 1× n matrix. Since
r(A) = 1, b is not a zero vector. Then it is obvious that any two columns
of A are linearly dependent. So we have mc(A) = 1. The converse is
obvious from (2.3).

Let β(R+,m, n) be the largest integer k such that for all A ∈Mm,n(R+),
r(A) = mc(A) if r(A) ≤ k and there is at least one m×n matrix A with
r(A) = k. The matrix A in (2.4) shows that β(R+, 3, 4) < 3. In general,
0 ≤ β(R+, m, n) ≤ n. We also obtain that

r

([
A 0
0 0

])
= r(A) and mc

([
A 0
0 0

])
= mc(A) (2.5)

for all matrices A ∈Mm,n(R+).

Lemma 2.2. If A is a matrix in Mp,q(R+) such that mc(A) > r(A),
then we have that β(R+,m, n) < r(A) for all m ≥ p and n ≥ q.

Proof. Since mc(A) > r(A) for some A ∈Mp,q(R+), we have β(R+, p, q) <
r(A) from the definition of β. Let B = A ⊕ 0m−p,n−q be the matrix in
Mm,n(R+), where m ≥ p and n ≥ q. Then (2.5) implies that

r(B) = r(A) < mc(A) = mc(B).

So, we have β(R+,m, n) < r(A) for all m ≥ p and n ≥ q.

Lemma 2.3. For any matrix A in M2,n(R+) with n ≥ 2, we have that
r(A) = 2 if and only if mc(A) = 2.

Proof. Suppose that r(A) = 2. If n = 2, then (2.3) implies that
mc(A) = 2. So we can assume that n ≥ 3. Let

(
a1

b1

)
,

(
a2

b2

)
and

(
a3

b3

)

be any three columns of A. We claim those three columns are linearly
dependent. This implies mc(A) < 3, and hence mc(A) = 2 by lemma
2.1. Let X = {ai, bi | i = 1, 2, 3}.
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First, assume that X has at least two zero elements. Then we can
easily show those three columns are linearly dependent.

Next, assume that X has only one zero element. Without loss of
generality, we may take a1 = 0 or b1 = 0. If a1 = 0, let min{a2

b2
, a3

b3
} = a3

b3
.

Then we have

a2b3 − a3b2

a2b1

(
a1

b1

)
+

a3

a2

(
a2

b2

)
=

(
a3

b3

)
.

If b1 = 0, let max{a2

b2
, a3

b3
} = a3

b3
. Then we now have

a3b2 − a2b3

a1b2

(
a1

b1

)
+

b3

b2

(
a2

b2

)
=

(
a3

b3

)
.

So those three columns are linearly dependent.
Finally, assume that X has no zero element. If ai

bi
=

aj

bj
for some i 6= j,

then it is obvious that the three vectors are linearly dependent. Thus,
without loss of generality, we may assume that a1

b1
< a2

b2
< a3

b3
. Then we

obtain that

a2b3 − a3b2

a1b3 − a3b1

(
a1

b1

)
+

a1b2 − a2b1

a1b3 − a3b1

(
a3

b3

)
=

(
a2

b2

)
.

Hence those three columns are linearly dependent.
The converse follows from (2.3) and lemma 2.1.

Theorem 2.4. Let A be a matrix in Mm,n(R+) with min(m,n) ≥ 2.
Then we have that r(A) = 2 if and only if mc(A) = 2.

Proof. Let r(A) = 2. Then A can be factored as A = BC for some
m× 2 matrix B = [ x y ] and 2× n matrix C with r(B) = r(C) = 2. If
n = 2, then (2.3) implies that mc(A) = 2. So we can assume that n ≥ 3.

Then any column of A has the form ax + by with a column

(
a
b

)
of

C. Let a1x + b1y, a2x + b2y and a3x + b3y be arbitrary chosen three
columns of A. Then(

a1

b1

)
,

(
a2

b2

)
and

(
a3

b3

)

are columns of C and hence they are linearly dependent by lemma 2.3.

Without loss of generality, we may write

(
a3

b3

)
= α

(
a1

b1

)
+β

(
a2

b2

)

for some α, β ∈ R+. Then we obtain that

a3x + b3y = α(a1x + b1y) + β(a2x + b2y).
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Therefore any three columns of A are linearly dependent, and hence
mc(A) ≤ 2. By lemma 2.1, we have mc(A) = 2. The converse is obvious
from (2.3) and lemma 2.1.

Example 2.5. Consider a matrix

A =




a b 0 0
0 c d 0
0 0 e f


 ∈M3,4(R+),

where a, b, c, d, e and f are positive reals. Since all columns of A are
linearly independent over R+, we have mc(A) = 4. Also 2 ≤ r(A) ≤
3 = min(3, 4) by lemma 2.1 and (2.1). It follows from theorem 2.4 that
r(A) 6= 2. Therefore r(A) = 3.

Theorem 2.6. For the nonnegative reals R+, we have the value of β
as follows :

β(R+,m, n) =





1 if min(m,n) = 1;
3 if m ≥ 3, and n = 3;
2 otherwise.

Proof. If min(m,n) = 1, then we have β(R+,m, n) = 1 from lemma
2.1. Consider the matrix A ∈M3,4(R+) in example 2.5. Then r(A) = 3
and mc(A) = 4. Thus we have β(R+,m, n) ≤ 2 for all m ≥ 3 and n ≥ 4
by lemma 2.2. Suppose m ≥ 2 and n ≥ 2. Then we have β(R+, m, n) ≥ 2
for all m ≥ 2 and n ≥ 2 by theorem 2.4. Finally, consider the case with
m ≥ 3 and n = 3. Then we have β(R+,m, n) = 3 by lemma 2.1 and
theorem 2.4. Therefore we have values of β as required.

3. Maximal column rank preservers of matrices over R+

In this section we have characterizations of the linear operators that
preserve the maximal column rank of matrices over R+.

For a linear operator T on Mm,n(R+), it is said to preserve the max-
imal column rank if mc(T (X)) = mc(X) for all X ∈Mm,n(R+). It pre-
serves maximal column rank r if mc(T (X)) = r whenever mc(X) = r.
For the terms rank preserver and rank r preserver on Mm,n(R+), they
can be defined similarly (see [3]).

Let S be any set. Then an n× n square matrix A over S is called S-
invertible if there exists a matrix B ∈Mn,n(S) such that AB = BA = I.
It is well known [3] that a square matrix A over R+ is R+-invertible if
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and only if some permutation of its rows makes it a diagonal matrix
all of whose diagonal entries are nonzero in R+. Also, we say that A
is S-singular if there exist some nonzero vectors x ∈ M1,n(S) and y ∈
Mn,1(S) such that xA = 0 and Ay = 0. Otherwise A is S-nonsingular.
If S is a field, nonsingularity and invertibility are equivalent.

Lemma 3.1. Let X be any matrix in Mm,n(R+). Suppose that Q is
a R-invertible matrix in Mm,m(R+), and P a R+-invertible matrix in
Mn,n(R+). Then we have that

mc(QX) = mc(X) = mc(XP ).

Proof. First, we show that mc(X) = mc(QX). Suppose that mc(X) =
r and mc(QX) = s. Since mc(X) = r, there exist r linearly independent
columns xi(1), · · · , xi(r) in X which are maximal. Then Qxi(1), · · · , Qxi(r)

are linearly independent columns in QX because Q is a R-invertible
matrix. Thus we have s ≥ r. Also, since mc(QX) = s, there exist
s linearly independent columns yi(1), · · · ,yi(s) in QX which are maxi-

mal. Then Q−1yi(1), · · · , Q−1yi(s) are linearly independent columns in

X(= Q−1QX). Hence r ≥ s. Therefore we have mc(X) = mc(QX).
Next, we show that mc(X) = mc(XP ). Since P is R+-invertible, each

column of P has only one nonzero entry. Let pi be the nonzero entry of
the ith column of P . Then we have

XP = [x1 · · ·xn]P = [p1xi(1) · · · pnxi(n)],

where {i(1), · · · , i(n)} is a permutation of {1, · · · , n}. If xa,xb, · · · ,xc

are linearly independent columns of X, then paxi(a), pbxi(b), · · · , pcxi(c)

are linearly independent columns of XP , and conversely. Hence we have
mc(X) = mc(XP ).

For a given matrix P in Mn,n(R+), we define a linear operator T on
Mm,n(R+) by T (X) = XP . If P is R+-invertible, lemma 3.1 implies
that T preserves the maximal column rank. But the following example
shows that if P is R-invertible, T may not preserve the maximal column
rank.

Example 3.2. Let

A =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ∈M4,4(R+) and P = A⊕ In−4,n−4,
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where n ≥ 4. Then we can easily show that P is R-invertible in
Mn,n(R+), but not R+-invertible. Let T be a linear operator defined
by T (X) = XP on Mm,n(R+) with min(m,n) ≥ 4. Consider the follow-
ing matrices

Y =




1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1


 ∈M4,4(R+) and X = Y ⊕ 0m−4,n−4.

Since all columns of Y are linearly independent, we have mc(Y ) = 4,
and hence mc(X) = 4 by (2.5). But

Y A =




1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1







1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 =




1 1 1 0
1 1 0 1
0 1 1 0
0 1 0 1




has mc(Y A) < 4 because the second column is the sum of the last two
columns of Y A. Notice that XP = Y A⊕0m−4,n−4, and hence mc(XP ) =
mc(Y A) < 4 by (2.5). Therefore T does not preserve maximal column
rank 4 on Mm,n(R+).

We say that a linear operator T on Mm,n(R+) is a (U, V )-operator if
there exist R+-invertible matrices U and V inMm,m(R+) andMn,n(R+),
respectively such that either T (A) = UAV or m = n, T (A) = UAtV for
all A in Mm,n(R+). Lemma 3.1 shows that if T is a (U, V )-operator on
Mm,n(R+), then T preserves all maximal column ranks.

Beasley et al. [3] obtained the following two theorems :

Theorem 3.3. Let T be a linear operator onMm,n(R+) with min(m,n) ≥
2. Then the following are equivalent :

(a) T preserves ranks 1 and 2 ;
(b) T is injective, and there exist two matrices U and V over R+ such
that either

(1) T (X) = UXV for all X in Mm,n(R+), or
(2) T (X) = UX tV for all X in Mm,n(R+), possibly m 6= n.

[Here, T need not to be a (U, V )-operator because U or V need not
be invertible.]

Theorem 3.4. Let T be a linear operator onMm,n(R+) with min(m,n) ≥
4. Then the following are equivalent :
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(a) T preserves ranks 1, 2, and 4 ;
(b) T is a (U, V )-operator on Mm,n(R+) ;
(c) T preserves all ranks.

The next sequence of lemmas will be used to prove the main theorem.

Lemma 3.5. Let Q be a given matrix in Mm,m(R+) and T a linear
operator on Mm,n(R+) defined by T (X) = QX. If T preserves all
maximal column ranks, then Q is R-nonsingular, and conversely.

Proof. We use the law of contraposition. Assume that Q is R-singular.
If m = 1, then we have Q = 0. Thus T does not preserve maximal
column rank 1. Let m ≥ 2. Since Q is R-singular, Qy= 0 for some
nonzero vector y= [y1, · · · , ym]t in Mm,1(R). We choose a positive real
α = max{| yi| | i = 1, · · · ,m} such that z = j+y ∈Mm,1(R+), where j
is the vector inMm,1(R+) with all entries α. Then Qz = Q(j+y) = Qj.
Consider the vector e1= [1, 0, · · · , 0]t ∈ Mn,1(R+). Then zet

1 and jet
1

are distinct elements of Mm,n(R+) such that

T (zet
1) = Qzet

1 = Qjet
1 = T (jet

1).

This shows that T is not injective. By theorem 3.3, T does not preserve
rank (and hence maximal column rank by theorem 2.6) 1 or 2. The
converse follows from lemma 3.1.

Lemma 3.6. For a matrix A in Mn,n(R+), define a linear operator
T on Mm,n(R+) by T (X) = XA. If A is R-singular, then T does not
preserve maximal column rank 1 or 2.

Proof. If n = 1, then A = 0, and the result is obvious. Let n ≥ 2.
Since A is R-singular, there exists a nonzero vector x= [x1, · · · , xn] in
M1,n(R) such that xA = 0. Choose a positive real β = max{| xi| | i =
1, · · · , n} such that w = l + x ∈ M1,n(R+), where l is the vector in
M1,n(R+) with all entries β. Then wA = (l + x)A = lA. Consider the
vector e1= [1, 0, · · · , 0]t ∈ Mm,1(R+). Then e1w and e1l are distinct
elements of Mm,n(R+) such that

T (e1w) = e1wA = e1lA = T (e1l).

This shows that T is not injective and the result follows from theorems
3.3 and 2.6.

For any two matrices A = [aij] and B = [bij] in Mm,n(R+), we say
A dominates B (written B ≤ A or A ≥ B) if aij = 0 implies bij = 0.
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Let A be a fixed matrix in Mn,n(R+). Then lemma 3.6 shows that if
T (X) = XA preserves the maximal column rank on Mm,n(R+), then A
dominates a permutation matrix P .

Lemma 3.7. For any positive reals α1, α2, · · · , αn, there is a set of
linearly independent vectors {x1,x2, · · · ,xn} in Rn

+ such that

α1x1 + α2x2 = α3x3 + · · ·+ αnxn.

Proof. Choose x1 = α−1
1 [1, 1, 0, · · · , 0]t, x2 = α−1

2 [0, 0, 1, · · · , 1]t, x3 =
α−1

3 [1, 0, 1, 0, · · · , 0], x4 = α−1
4 [0, 1, 0, 1, 0, · · · , 0]t, and for i ≥ 5 xi =

α−1
i [0, · · · , 0, 1, 0, · · · , 0]t. Then these are vectors satisfying the required

property.

Let A = [aij] and B = [bij] be matrices in Mm,n(R+) with A ≥ B.
Then we say A strictly dominates B (written A > B) if for some (i, j)-
entry, aij 6= 0, but bij = 0.

Lemma 3.8. Let n ≥ 4. If A is a R-nonsingular matrix in Mn,n(R+)
with A > P for some permutation matrix P , then T (X) = XA does not
preserve maximal column rank n on Mn,n(R+).

Proof. Let A = [aij] ∈ Mn,n(R+) be a R-nonsingular matrix which
strictly dominates a permutation matrix P . Since A > P , one of the
columns of A has more than one positive entry. Without loss of general-
ity we may assume that the first column has at least two nonzero entries.
We like to show that there is a linearly independent set {x1,x2, · · · ,xn}
in Rn

+ such that for some nonnegative reals β2, · · · , βn,

y1 = β2y2 + β3y3 + · · ·+ βnyn, (3.1)

where T (X) = XA = [y1 y2 · · · yn], X = [x1 x2 · · · xn] ∈Mn,n(R+)
and yi = a1ix1 + a2ix2 + · · · + anixn for all i = 1, 2, · · · , n. Now, (3.1)
is equivalent to

λ1x1 + λ2x2 + · · ·+ λnxn = 0, (3.2)

where for all i = 1, 2, · · · , n

λi = ai1 − ai2β2 − ai3β3 − · · · − ainβn. (3.3)

Claim: There are nonnegative reals β2, β3, · · · , βn such that exactly two
of λk are positive and the other n− 2 are negative. More precisely, there
exist positive reals β2, β3, · · · , βn and a permutation σ of {1, 2, · · · , n}
such that

λσ(i) is

{
positive if i ≤ 2,
negative if i ≥ 3

. (3.4)
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Assume the claim holds. Let αi = λσ(i) for i ≤ 2, and αi = −λσ(i) for
i ≥ 3. Then the equation (3.2) becomes,

α1xσ(1) + α2xσ(2) = α3xσ(3) + α4xσ(4) + · · ·+ αnxσ(n). (3.5)

Now, by lemma 3.7, the equation (3.5) has a linearly independent so-
lution vectors {x1,x2,· · · xn}. For X = [x1 x2 · · · xn] ∈ Mn,n(R+),
the corresponding yi’s satisfy (3.1). This shows we have found X ∈
Mn,n(R+) such that mc(X) = n but mc(XA) ≤ n− 1. So we only need
to show the claim.
Proof of the claim. Consider the relations

a12z2 + a13z3 + · · · + a1nzn = a11

a22z2 + a23z3 + · · · + a2nzn = a21
...

...
...

an2z2 + an3z3 + · · · + annzn = an1.

(3.6)

First we consider the case when each of the relations in (3.6) is an equa-
tion in z2, z3, · · · , zn. (This is the case when coefficients of z2, z3, · · · , zn

in any of the relations do not vanish simultaneously.) Then (3.6) repre-
sents equations of n planes in Rn. Since A is R-nonsingular, the planes
are distinct. Moreover, each of them have nonempty intersection with
Rn. For any positive vector (b2, b3, · · · , bn) ∈ Rn−1

+ , let

αk =
ak1

ak2b2 + ak3b3 + · · ·+ aknbn

for k = 1, 2, · · · , n.

Then the positive ray passing through the origin and (b2, b3, · · · , bn)
meets the k-th plane in (3.6) at the point Pk = (αkb2, αkb3, · · · , αkbn).
By our choice of the first column of the matrix A, at least two of αk

are nonzero. Thus any positive ray from the origin meets at least two
of the planes. Now, we choose the vector (b2, b3, · · · , bn) in such a way
that those points Pk which are not the origin are all distinct. Let σ
be a permutation of {1, 2, · · · , n} such that Pσ(1), Pσ(2), · · · , Pσ(n) are
arranged so that their distances from the origin are in descending order.
Then Pσ(2) and Pσ(3) are distinct points in Rn−1

+ . Let Q be the mid-point
of the line joining Pσ(2) and Pσ(3). If Q has coordinate (β′2, β

′
3, · · · , β′n)

then for these values of (β2, β3, · · · , βn), (3.4) holds and we are done.
Next, consider the case when some of the relations in (3.6) is not an

equation of zi. Then ai2 = ai3 = · · · = ain = 0 for some i = 1, 2, · · · , n.
Since A is R-nonsingular, ai1 > 0 and, consequently, λi > 0. Moreover,
there can not be two such i, because in that case the rows of A would be
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linearly dependent. So exactly n−1 relations in (3.6) represent equations
of z2, z3, · · · , zn in Rn−1. Using the argument of the previous case we
can find a point Q with positive coordinates (β′2, β

′
3, · · · , β′n) such that

for these values of (β2, β3, · · · , βn) exactly one value of λk other than λi

is positive and the other n− 2 are negative. This completes the proof of
the claim.

Lemma 3.9. Let m ≥ n ≥ 4 and A be a matrix in Mn,n(R+). If
T (X) = XA preserves maximal column rank 1, 2 and n on Mm,n(R+),
then A is R+-invertible.

Proof. By lemma 3.6, we have A is R-nonsingular and therefore A ≥
P for some permutation matrix P . Suppose that A > P . Then, by
lemma 3.8, there is a matrix X in Mn,n(R+) such that mc(X) = n
and mc(XA) ≤ n − 1. If O is the zero matrix in Mm−n,n(R+), then

Y =

[
X
O

]
∈Mm,n(R+). By the property (2.5), we have that mc(Y ) =

n and mc(Y A) = mc

([
XA
O

])
≤ n − 1. Thus T does not preserve

maximal column rank n, a contradiction. This implies A is R+-invertible.

Let T be a linear operator on Mn,n(R+) defined by T (X) = X t, a
transpose of X ∈ Mn,n(R+). Then T preserves all ranks since it is a
(U, V )-operator. But the following example shows that the transposition
operator does not preserve all maximal column ranks.

Example 3.10. Let

B =




a 0 0 0
b c 0 0
0 d e 0
0 0 f 0




be a matrix in M4,4(R+), where a, b, c, d, e and f are all positive reals.
Then we have mc(B) = 3 since the first three columns are linearly
independent. But the maximal column rank of

Bt =




a b 0 0
0 c d 0
0 0 e f
0 0 0 0



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is 4 by (2.5) and example 2.5. Thus the transposition operator does not
preserve maximal column rank 3 on M4,4(R+).

Lemma 3.11. If T is a transposition operator on Mn,n(R+) with n ≥
4, then T does not preserve maximal column rank r for r ≥ 3, but
preserves all ranks.

Proof. Let B be the matrix in example 3.10. Consider C = B⊕0n−4 ∈
Mn,n(R+). Then mc(C) = 3 by (2.5), but T (C) = Ct has maximal
column rank 4 by (2.5). Let

D = B ⊕ Ik ⊕ 0n−k−4 ∈Mn,n(R+),

where Ik is the identity matrix of order k. Then mc(D) = 3 + k but
T (D) = Dt has maximal column rank 4 + k. Therefore T does not
preserve maximal column rank r for r ≥ 3, but it is obvious that T
preserves all ranks since the transposition operator is a (U, V )-operator.

Lemma 3.12. Suppose T is a linear operator on Mm,n(R+), and m ≥
n ≥ 4. If T preserves maximal column ranks 1, 2 and n, then there exist
Q ∈ Mm,m(R+) and P ∈ Mn,n(R+) such that T (X) = QXP for all
X ∈Mm,n(R+), where Q is R-invertible and P is R+-invertible.

Proof. Since T preserves maximal column ranks 1 and 2, it preserves
ranks 1 and 2 by theorem 2.6. Thus T is injective and has the form (1)
T (X) = QXP or (2) T (X) = QX tP given in theorem 3.3. Suppose (1)
holds. First, we show that Q is R-invertible, equivalently, R-nonsingular.
If Q is R-singular, then, as in the proof of lemma 3.5, we can choose
X1, X2 ∈ Mm,n(R+) such that X1 6= X2 and QX1 = QX2. We then
have T (X1) = T (X2), contradicting the fact that T is injective. Thus, Q
is R-nonsingular. Next, we show that P is R+-invertible. It follows from
lemma 3.6 that P is R-nonsingular. If P is not R+-invertible, then, by
lemma 3.9, there exists Y ∈Mm,n(R+) of maximal column rank 1, 2 or n
such that mc(Y ) 6= mc(Y P ). We then have, mc(T (Y )) = mc(QY P ) =
mc(Y P ) 6= mc(Y ), a contradiction. Thus P must be R+-invertible.

Now, suppose (2) holds. Then Q and P are all m × n matrices, and
T 2(X) = WXZ, where W = QP t and Z = QtP . Since T preserves
maximal column ranks 1, 2, and n, so does T 2. By (1), W is R-invertible
in Mm,m(R+) and Z is R+-invertible in Mn,n(R+). If m > n, then by
the properties (2.1) and (2.2), we obtain that

ρ(W ) = ρ(QP t) ≤ min(ρ(Q), ρ(P t)) ≤ ρ(Q) ≤ min(m,n) = n < m,
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a contradiction. Thus we have m = n, and so Q and P are R+-invertible
matrices. But T (X) = QX tP does not preserve maximal column rank
n by lemma 3.11.

Theorem 3.13. Suppose T is a linear operator on Mm,n(R+) with
m ≥ n ≥ 4. Then the following are equivalent :

(1) T preserves maximal column ranks 1, 2, and n ;
(2) There exist Q ∈ Mm,m(R+) and P ∈ Mn,n(R+) such that T (X) =
QXP for all X ∈
Mm,n(R+), where Q is R-invertible and P is R+-invertible ;

(3) T preserves all maximal column ranks.

Proof. The proof follows lemma 3.12.

If n ≤ 3, then the linear operators that preserve maximal column
rank on Mm,n(R+) are the same as the rank preservers, which were
characterized in [3].

Thus we have characterizations of the linear operators that preserve
the maximal column rank of matrices over nonnegative reals.
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