• Title/Summary/Keyword: operator algebra

Search Result 139, Processing Time 0.019 seconds

THE GENERALIZED NORMAL STATE SPACE AND UNITAL NORMAL COMPLETELY POSITIVE MAP

  • Sa Ge Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.237-257
    • /
    • 1998
  • By introducing the notion of a generalized normal state space, we give a necessary and sufficient condition for that there exists a unital normal completely map from a von Neumann algebra into another, in terms of their generalized normal state spaces.

  • PDF

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.573-597
    • /
    • 2005
  • A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

FILTERS OF BE-ALGEBRAS WITH RESPECT TO A CONGRUENCE

  • RAO, M. SAMBASIVA
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.1-7
    • /
    • 2016
  • Some properties of filters are studied with respect to a congru-ence of BE-algebras. The notion of θ-filters is introduced and these classes of filters are then characterized in terms of congruence classes. A bijection is obtained between the set of all θ-filters of a BE-algebra and the set of all filters of the respective BE-algebra of congruences classes.

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

Injective JW-algebras

  • Jamjoom, Fatmah Backer
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.267-276
    • /
    • 2007
  • Injective JW-algebras are defined and are characterized by the existence of projections of norm 1 onto them. The relationship between the injectivity of a JW-algebra and the injectivity of its universal enveloping von Neumann algebra is established. The Jordan analgue of Theorem 3 of [3] is proved, that is, a JC-algebra A is nuclear if and only if its second dual $A^{**}$ is injective.

  • PDF

CLIFFORD $L^2$-COHOMOLOGY ON THE COMPLETE $K\"{A}$HLER MANIFOLDS

  • Pak, Jin-Suk;Jung, Seoung-Dal
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.167-179
    • /
    • 1997
  • In the study of a manifold M, the exterior algebra $\Lambda^* M$ plays an important role. In fact, the de Rham cohomology theory gives many informations of a manifold. Another important object in the study of a manifold is its Clifford algebra (Cl(M), generated by the tangent space.

  • PDF

NORMAL INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.431-443
    • /
    • 2005
  • We investigate the equation Ax = y, where the vectors x and y are given and the operator A is normal and required to lie in CSL-algebra $AlG{\mathcal{L}}$. We desire a necessary and sufficient condition for the existence of a solution A.

  • PDF

Efficient Evaluation of Path Algebra Expressions

  • Lee, Tae-kyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • In this paper, an efficient system for finding answers to a given path algebra expression in a directed acylic graph is discussed more particulary, in a multimedia presentration graph. Path algebra expressions are formulated using revised versions of operators next and until of temporal logic, and the connected operator. To evaluate queries with path algebra expressions, the node code system is proposed. In the node code system, the nodes of a presentation graph are assigned binary codes (node codes) that are used to represent nodes and paths in a presentation graph. Using node codes makes it easy to find parent-child predecessor-sucessor relationships between nodes. A pair of node codes for connected nodes uniquely identifies a path, and allows efficient set-at-a-time evaluations of path algebra expressions. In this paper, the node code representation of nodes and paths in multimedia presentation graphs are provided. The efficient algorithms for the evaluation of queries with path algebra expressions are also provided.

  • PDF

BL-ALGEBRAS DEFINED BY AN OPERATOR

  • Oner, Tahsin;Katican, Tugce;Saeid, Arsham Borumand
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.165-178
    • /
    • 2022
  • In this paper, Sheffer stroke BL-algebra and its properties are investigated. It is shown that a Cartesian product of two Sheffer stroke BL-algebras is a Sheffer stroke BL-algebra. After describing a filter of Sheffer stroke BL-algebra, a congruence relation on a Sheffer stroke BL-algebra is defined via its filter, and quotient of a Sheffer stroke BL-algebra is constructed via a congruence relation. Also, it is defined a homomorphism between Sheffer stroke BL-algebras and is presented its properties. Thus, it is stated that the class of Sheffer stroke BL-algebras forms a variety.