• Title/Summary/Keyword: operator algebra

Search Result 139, Processing Time 0.02 seconds

A NOTE ON THE NUMERICAL RANGE OF AN OPERATOR

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.27-30
    • /
    • 1984
  • The concepts of the numerical range of an operator on a Hillbert space and on a Banach space were introduced by Toeplitz in 1918 and Bauer in 1962 respectively. Bauer's paper was concerned only with finite dimensional Banach spaces, but the concept of numerical range that he introduced is available without restriction of the dimension [1, 2]. In this paper, we define a C-algebra spatial numerical range of an operator on C-algebra valued inner product modules introduced by Paschke [4], and give analogous results on these modules as those on Banach spaces.

  • PDF

COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.255-260
    • /
    • 2010
  • Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. We show the following : Let Alg$\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let x = $(x_i)$ and y = $(y_i)$ be vectors in H. Then the following are equivalent: (1) There exists a compact operator A = $(a_{ij})$ in Alg$\mathcal{L}$ such that Ax = y. (2) There is a sequence ${{\alpha}_n}$ in $\mathbb{C}$ such that ${{\alpha}_n}$ converges to zero and for all k ${\in}$ $\mathbb{N}$, $y_1 = {\alpha}_1x_1 + {\alpha}_2x_2$ $y_{2k} = {\alpha}_{4k-1}x_{2k}$ $y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}+x_{2k+2}$.

GRADED POST-LIE ALGEBRA STRUCTURES, ROTA-BAXTER OPERATORS AND YANG-BAXTER EQUATIONS ON THE W-ALGEBRA W(2, 2)

  • Tang, Xiaomin;Zhong, Yongyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1727-1748
    • /
    • 2018
  • In this paper, we characterize the graded post-Lie algebra structures on the W-algebra W(2, 2). Furthermore, as applications, the homogeneous Rota-Baxter operators on W(2, 2) and solutions of the formal classical Yang-Baxter equation on $W(2,2){\ltimes}_{ad^*} W(2,2)^*$ are studied.

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF

DILATIONS FOR POLYNOMIALLY BOUNDED OPERATORS

  • EXNER, GEORGE R.;JO, YOUNG SOO;JUNG, IL BONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.893-912
    • /
    • 2005
  • We discuss a certain geometric property $X_{{\theta},{\gamma}}$ of dual algebras generated by a polynomially bounded operator and property ($\mathbb{A}_{N_0,N_0}$; these are central to the study of $N_{0}\timesN_{0}$-systems of simultaneous equations of weak$^{*}$-continuous linear functionals on a dual algebra. In particular, we prove that if T $\in$ $\mathbb{A}$$^{M}$ satisfies a certain sequential property, then T $\in$ $\mathbb{A}^{M}_{N_0}(H) if and only if the algebra $A_{T}$ has property $X_{0, 1/M}$, which is an improvement of Li-Pearcy theorem in [8].

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....

DIRECT SUM, SEPARATING SET AND SYSTEMS OF SIMULTANEOUS EQUATIONS IN THE PREDUAL OF AN OPERATOR ALGEBRA

  • Lee, Mi-Young;Lee, Sang-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 1994
  • Let H be a separable, infinite dimensional, compled Hilbert space and let L(H) be the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of L(H) that contains the identity operator $I_{H}$ and is closed in the ultraweak topology on L(H). Note that the ultraweak operator topology coincides with the wea $k^{*}$ topology on L(H)(see [3]). Bercovici-Foias-Pearcy [3] studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras has been applied to the topics of invariant subspaces, dilation theory and reflexibity (see [1],[2],[3],[5],[6]), and is deeply related with properties ( $A_{m,n}$). Jung-Lee-Lee [7] introduced n-separating sets for subalgebras and proved the relationship between n-separating sets and properties ( $A_{m,n}$). In this paper we will study the relationship between direct sum and properties ( $A_{m,n}$). In particular, using some results of [7] we obtain relationship between n-separating sets and direct sum of von Neumann algebras.ras.s.ras.

  • PDF

HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Given vectors x and y in a separable Hilbert space $\cal H$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let $\cal L$ be a subspace lattice acting on a separable complex Hilbert space $\cal H$ and let x = ($x_{i}$) and y = ($y_{i}$) be vectors in $\cal H$. Then the following are equivalent; (1) There exists a Hilbert-Schmidt operator A = ($a_{ij}$ in Alg$\cal L$ such that Ax = y. (2) There is a bounded sequence {$a_n$ in C such that ${\sum^{\infty}}_{n=1}\mid\alpha_n\mid^2 < \infty$ and $y_1 = \alpha_1x_1 + \alpha_2x_2$ ... $y_{2k} =\alpha_{4k-1}x_{2k}$ $y_{2k=1} = \alpha_{4kx2k} + \alpha_{4k+1}x_{2k+1} + \alpha_{4k+1}x_{2k+2}$ for K $\epsilon$ N.

  • PDF