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GRADED POST-LIE ALGEBRA STRUCTURES,

ROTA-BAXTER OPERATORS AND YANG-BAXTER

EQUATIONS ON THE W-ALGEBRA W (2, 2)

Xiaomin Tang and Yongyue Zhong

Abstract. In this paper, we characterize the graded post-Lie algebra
structures on the W-algebra W (2, 2). Furthermore, as applications, the

homogeneous Rota-Baxter operators on W (2, 2) and solutions of the for-

mal classical Yang-Baxter equation on W (2, 2)nad∗ W (2, 2)∗ are studied.

1. Introduction and preliminaries

Throughout the paper, denote by C,Z the sets of complex numbers, integers
respectively. For a fixed integer k, let Z>k = {t ∈ Z | t > k}, Z<k = {t ∈ Z | t <
k}, Z>k = {t ∈ Z | t > k} and Z6k = {t ∈ Z | t 6 k}. In this paper, we aim to
determine the graded post-Lie algebra structures on W-algebra W (2, 2), and
classify some Rota-Baxter operators on W (2, 2) and solutions of the formal
Yang-Baxter equations on W (2, 2) nad∗ W (2, 2)∗. Now we recall some related
concepts and facts as follows.

1.1. W-algebra W (2, 2)

The W-algebra W (2, 2) is an infinite-dimensional Lie algebra with the C-
basis {Lm, Hm | m ∈ Z} and the Lie brackets are given by

[Lm, Ln] = (m− n)Lm+n,

[Lm, Hn] = (m− n)Hm+n,

[Hm, Hn] = 0, ∀m,n ∈ Z.

A class of central extensions of W (2, 2) first introduced by [28] in their recent
work on the classification of some simple vertex operator algebras, and then
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some scholars studied the theory on structures and representations of W (2, 2)
or its central extensions, see [7, 12,15,19,26] and so forth.

1.2. Post-Lie algebra

Post-Lie algebras were introduced around 2007 by B. Vallette [25], who found
the structure in a purely operadic manner as the Koszul dual of a commutative
trialgebra. Since then, post-Lie algebras have aroused the interest of a great
many authors, see [1,4–6,9,10,17,18,23]. It should be pointed out that post-Lie
algebras appear in many areas of mathematics and physics including the differ-
ential geometry [17], Lie groups [6,17], classical Yang-Baxter equation [1], Hopf
algebra, classical r-matrices [11] and Rota-Baxter operators [13]. One of the
most important problems in the study of post-Lie algebras is to find the post-
Lie algebra structures on the (given) Lie algebras. For the finite-dimensional
cases, in [18], the authors determined all post-Lie algebra structures on sl(2,C)
of special linear Lie algebra of order 2 and in [23] the authors studied the post-
Lie algebra structures on the solvable Lie algebra t(2,C) of the Lie algebra of
2×2 upper triangular matrices. For the infinite-dimensional cases, some classes
of post-Lie algebra structures on the Witt algebra are considered by [21], and
all commutative post-Lie algebra structures on the W-algebra W (2, 2) are given
in [22]. We now turn to the definition of post-Lie algebra following reference
[25].

Definition 1.1. A post-Lie algebra (V, ◦, [, ]) is a vector space V over a field
k equipped with two k-bilinear products x ◦ y and [x, y] satisfying that (V, [, ])
is a Lie algebra and

[x, y] ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z)− 〈x, y〉 ◦ z,(1)

x ◦ [y, z] = [x ◦ y, z] + [y, x ◦ z](2)

for all x, y, z ∈ V , where 〈x, y〉 = x ◦ y − y ◦ x. We also say that (V, ◦, [, ]) is
a post-Lie algebra structure on the Lie algebra (V, [, ]). If a post-Lie algebra
(V, ◦, [, ]) satisfies x ◦ y = y ◦ x for all x, y ∈ V , then it is called a commutative
post-Lie algebra.

Suppose that (L, [, ]) is a Lie algebra. Two post-Lie algebras (L, [, ], ◦1)
and (L, [, ], ◦2) on the Lie algebra L are called to be isomorphic if there is an
automorphism τ of the Lie algebra (L, [, ]) satisfies

τ(x ◦1 y) = τ(x) ◦2 τ(y),∀x, y ∈ L.
By Proposition 2.5 of [17], we have the following result.

Proposition 1.2. Let (V, ◦, [, ]) be a post-Lie algebra defined by Definition 1.1.
Then the following product

(3) {x, y} , 〈x, y〉+ [x, y],

induces a Lie algebra structure on V , where 〈x, y〉 = x◦y−y◦x. Furthermore, if
two post-Lie algebras (V, ◦1, [, ]) and (V, ◦2, [, ]) on the same Lie algebra (V, [, ])
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are isomorphic, then the two induced Lie algebras (V, {, }1) and (V, {, }2) are
isomorphic.

Remark 1.3. The left multiplications of the post-Lie algebra (V, [, ], ◦) are de-
noted by L(x), i.e., we have L(x)(y) = x ◦ y for all x, y ∈ V . By (2), we see
that all operators L(x) are Lie algebra derivations of the Lie algebra (V, [, ]).

1.3. Rota-Baxter operator

As a matter of fact, the Rota-Baxter operators were originally defined on
associative algebras by G. Baxter to solve an analytic formula in probability
[2] and then developed by the Rota school [20]. These operators have showed
up in many areas in mathematics and mathematical physics (see [8, 13, 14, 24]
and the references therein). Now let us recall the definition of Rota-Baxter
operator.

Definition 1.4. Let L be a complex Lie algebra. A Rota-Baxter operator of
weight λ ∈ C is a linear map R : L→ L satisfying

(4) [R(x), R(y)] = R([R(x), y] + [x,R(y)]) + λR([x, y]), ∀x, y ∈ L.

Note that if R is a Rota-Baxter operator of weight λ 6= 0, then λ−1R is
a Rota-Baxter operator of weight 1. Therefore, one only needs to consider
Rota-Baxter operators of weight 0 and 1.

1.4. Yang-Baxter equation

The Yang-Baxter equation first appeared in theoretical physics and statisti-
cal mechanics in the works of Yang [27] and Baxter [3] and it has led to several
interesting applications in quantum groups and Hopf algebras, knot theory,
tensor categories and integrable systems [16]. Let g be a Lie algebra. An ele-
ment r =

∑
i ai ⊗ bi ∈ g ⊗ g is called a solution of the classical Yang-Baxter

equation (CYBE) on g if r satisfies

[r12, r13] + [r12, r23] + [r13, r23] = 0 in U(g⊗ g⊗ g),

where U(g) is the universal enveloping algebra of g and

r12 =
∑
i

ai ⊗ bi ⊗ 1, r13 =
∑
i

ai ⊗ 1⊗ bi, r23 =
∑
i

1⊗ ai ⊗ bi.

For any r =
∑
i ai ⊗ bi, set

r21 =
∑
i

bi ⊗ ai.

It is obvious that r is skew-symmetric if and only if r = −r21.
Our results can be briefly summarized as follows: In Section 2, we classify

the graded post-Lie algebra structures on the W-algebra W (2, 2), and then
we obtain the induced graded Lie algebras. In Section 3, we give the induced
Rota-Baxter operators of weight 1 from the post-Lie algebras on W (2, 2). In
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Section 4, we give some solutions of the formal classical Yang-Baxter equation
on W (2, 2) nad∗ W (2, 2)∗.

2. The graded post-Lie algebra structure on the W-algebra W (2, 2)

Recently the author in [22] proved that any commutative post-Lie algebra
structure on the W-algebra W (2, 2) is trivial (namely, x ◦ y = 0 for all x, y ∈
W (2, 2)). We now will dedicate on the study of the noncommutative cases.
Since the W-algebra W (2, 2) is graded, we suppose that the post-Lie algebra
structure on the W-algebra W (2, 2) to be graded. Namely, we mainly consider
the post-Lie algebra structure on W-algebra W (2, 2) which satisfies

Lm ◦ Ln = φ(m,n)Lm+n,(5)

Lm ◦Hn = ϕ(m,n)Hm+n,(6)

Hm ◦ Ln = θ(m,n)Hm+n,(7)

Hm ◦Hn = 0(8)

for all m,n ∈ Z, where φ, ϕ, θ are complex-valued functions on Z× Z.

Lemma 2.1 (see [12]). Denote by Der(W (2, 2)) and by Inn(W (2, 2)) the space
of derivations and the space of inner derivations of W (2, 2) respectively. Then

Der(W (2, 2)) = Inn(W (2, 2))⊕ CD,

where D is an outer derivation defined by D(Lm) = 0, D(Hm) = Hm for all
m ∈ Z.

Lemma 2.2. There exists a graded post-Lie algebra structure on W (2, 2) sat-
isfying (5)-(8) if and only if there are complex-valued functions f , g on Z and
a complex number µ such that

φ(m,n) = (m− n)f(m),(9)

ϕ(m,n) = (m− n)f(m) + δm,0µ,(10)

θ(m,n) = (m− n)g(m),(11)

(m− n)(f(m+ n) + f(m)f(m+ n) + f(n)f(m+ n)− f(m)f(n)) = 0,(12)

(m− n)(g(m+ n) + f(m)g(m+ n) + g(n)g(m+ n)− f(m)g(n)) = 0,(13)

(m− n)(f(m) + f(n) + 1)δm+n,0µ = 0.(14)

Proof. Suppose that there exists a graded post-Lie algebra structure satisfying
(5)-(8) on W (2, 2). By Remark 1.3, L(x) is a derivation of W (2, 2). It follows
by Lemma 2.1 that there are a linear map ψ from W (2, 2) into itself and a
linear function ρ on W (2, 2) such that

x ◦ y = (adψ(x) + ρ(x)D)(y) = [ψ(x), y] + ρ(x)D(y),

where D is given by Lemma 2.1. This, together with (5)-(8), gives that

Lm ◦ Ln = [ψ(Lm), Ln] = φ(m,n)Lm+n,(15)
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Lm ◦Hn = [ψ(Lm), Hn] + ρ(Lm)Hn = ϕ(m,n)Hm+n,(16)

Hm ◦ Ln = [ψ(Hm), Ln] = θ(m,n)Hm+n,(17)

Hm ◦Hn = [ψ(Hm), Hn] + ρ(Hm)Hn = 0.(18)

Let

ψ(Lm) =
∑
i∈Z

a
(m)
i Li +

∑
i∈Z

b
(m)
i Hi and ψ(Hm) =

∑
i∈Z

c
(m)
i Li +

∑
i∈Z

d
(m)
i Hi,

where a
(m)
i , b

(m)
i , c

(m)
i , d

(m)
i ∈ C for all i ∈ Z. Then we have by (15)-(18) that∑

i∈Z
(i− n)a

(m)
i Li+n +

∑
i∈Z

(i−m)b
(m)
i Hi+n = φ(m,n)Lm+n,∑

i∈Z
(i− n)a

(m)
i Hi+n + ρ(Lm)Hn = ϕ(m,n)Hm+n,∑

i∈Z
(i− n)c

(m)
i Li+n −

∑
i∈Z

(n− i)d(m)
i Hi+n = θ(m,n)Hm+n,∑

i∈Z
(i− n)c

(m)
i Hi+n + ρ(Hm)Hn = 0.

It is not difficult to see by the above equations that (9), (10) and (11) are
established with

f(m) = a(m)
m , g(m) = d(m)

m , µ = ρ(L0) = ϕ(0, 0).

By a simple computation, we see that (1) with (x, y, z) = (Lm, Ln, Lk) holds if
and only if the following equation holds:

(m−n)(m+n−k)f(m+n)(19)

= (n−k)(m−n−k)f(n)f(m)− (m−k)(n−m−k)f(m)f(n)

− (m−n)(m+n−k)f(m)f(m+n) + (n−m)(n+m−k)f(n)f(m+n).

The above equation can be viewed as a polynomial equation in k, then we
see that (19) holds if and only if (12) holds. Similarly, one can see that (1)
with (x, y, z) = (Lm, Hn, Lk) or (Hn, Lm, Lk) holds if and only if the following
equation holds:

(m−n)(m+n−k)g(m+n)(20)

= (n−k) ((m−n−k)f(m)+δm,0µ) g(n)− (m−k)(n−m−k)f(m)g(n)

− ((m−n)f(m) + δm,0µ− (n−m)g(n))(n+m−k)g(m+n).

Viewing (20) as a polynomial equation in k, we see that (20) holds if and only
if the coefficients of degrees 0, 1 and 2, respectively, are the same on both sides
of the polynomial equation (20), i.e.,

(m− n)(m+ n)(g(m+ n) + f(m)g(m+ n) + g(n)g(m+ n)− f(m)g(n))

= nδm,0(ng(n)− (m+ n)g(m+ n)),



1732 X. TANG AND Y. ZHONG

(n−m)(g(m+ n) + f(m)g(m+ n) + g(n)g(m+ n)− f(m)g(n))

= δm,0µ(g(m+ n)− g(n))

and 0 = f(m)g(n) − f(m)g(n) hold. Note that nδm,0(ng(n) − (m + n)g(m +
n)) = 0 and δm,0µ(g(m + n) − g(n)) = 0. This implies that (20) holds if
and only if (13) holds. In a similar way as above, we obtain that (1) with
(x, y, z) = (Lm, Ln, Hk) holds if and only if (13) and (14) hold. It has been
proved that (9)-(14) hold.

Conversely, suppose that there are µ ∈ C and complex-valued functions
f, g on Z satisfying (9)-(14). It is easy to verify that (2) holds by (9)-(11).
We have to prove that (1) holds for all x, y, z ∈ W (2, 2). We observe that
this is obviously right when at least two elements in x, y, z belong to the set
{Hk, k ∈ Z}. Next, the discussion in the above paragraph tells us that (1)
with (x, y, z) = (Lm, Ln, Lk) holds by (12); (1) with (x, y, z) = (Lm, Hn, Lk)
or (Hn, Lm, Lk) holds by (13); and (1) with (x, y, z) = (Lm, Ln, Hk) holds by
(13) and (14). The proof is completed. �

For complex-valued functions f , g on Z, we denote I, J , M and N by

I = {m ∈ Z | f(m) = 0}, J = {m ∈ Z | f(m) = −1},
M = {n ∈ Z | g(n) = 0}, N = {n ∈ Z | g(n) = −1}.

Lemma 2.3. Suppose that f, g are complex-valued functions on Z. Then (12)
and (13) hold if and only if the following statements hold:

(i) I ∪ J = M ∪N = Z \ {0};
(ii) m,n ∈ I ⇒ m+ n ∈ I and m,n ∈ J ⇒ m+ n ∈ J for m 6= n;
(iii) m ∈ I, n ∈ M ⇒ m+ n ∈ M , and m ∈ J, n ∈ N ⇒ m+ n ∈ N for all

m 6= n.

Proof. We first prove the “only if” part. Letting n = 0 in (12), we have
m(f(m) + f(m)2) = 0. Thus, for m 6= 0, f(m) = 0 or f(m) = −1. Similarly,
by letting m = 0 in (13), it follows that g(n) = 0 or g(n) = −1 for n 6= 0. This
proves (i). Now we chose a pair of m,n ∈ Z with m 6= n, then by (12) and (13)
we see that

f(m+ n) + f(m)f(m+ n) + f(n)f(m+ n)− f(m)f(n) = 0,(21)

g(m+ n) + f(m)g(m+ n) + g(n)g(m+ n)− f(m)g(n) = 0.(22)

According to (21) and (22), it is easy to verify that (ii) and (iii) hold.
Next, we prove the “if” part. In fact, if m = n, then (12) and (13) are

obvious. Now we suppose that m 6= n. In this case, if m = 0 then n 6= 0, then
we also can obtain (12) and (13) since f(n), g(n) ∈ {0,−1}. Finally, we assume
that m 6= n with m,n 6= 0. By (i), we know f(m), f(n), g(m), g(n) ∈ {0,−1}.
It is easy to verify that (12) and (13) hold one by one according to values of
f, g. �
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Lemma 2.4. Suppose that f, g are complex-valued functions on Z. Then (12)
and (13) hold if and only if f and g meet one of the situations listed in Table
2.

Proof. The proof of the “if” direction can be directly verified. We now prove the
“only if” direction. In view of f satisfies (12), by Theorem 2.4 of [21] we know
that f is determined by Table 1. Next, we discuss the cases of g(1), g(−1), g(2)

Table 1. Values of f satisfying (12), where a ∈ C.

Cases f(n)
P1 f(Z) = 0
P2 f(Z) = −1
Pa3 f(Z>0) = −1, f(Z<0) = 0 and f(0) = a
Pa4 f(Z>0) = 0, f(Z<0) = −1 and f(0) = a
P5 f(Z>2) = −1 and f(Z61) = 0
P6 f(Z>2) = 0 and f(Z61) = −1
P7 f(Z>−1) = 0 and f(Z6−2) = −1
P8 f(Z>−1) = −1 and f(Z6−2) = 0

and g(−2). Lemma 2.3(i) tells us that g(1), g(−1), g(2), g(−2) ∈ {−1, 0}, and
so that there are 24 = 16 cases for g(x) where x = ±1,±2. Using Lemma
2.3(ii) and (iii), it follows by a simple discussion that 30 cases listed in Tabular
2 are established. �

Lemma 2.5. Let (P(φi, ϕi, θi), ◦i), i = 1, 2 be two algebras with the same
linear space as W (2, 2) and equipped with C-bilinear products x ◦i y such that

Lm ◦i Ln = φi(m,n)Lm+n, Lm ◦i Hn = ϕi(m,n)Hm+n,

Hm ◦i Ln = θi(m,n)Hm+n, Hm ◦i Hn = 0

for all m,n ∈ Z, where φi, ϕi, θi, i = 1, 2 are complex-valued functions on Z×Z.
Furthermore, let τ : P(φ1, ϕ1, θ1) → P(φ2, ϕ2, θ2) be a linear map determined
by τ(Lm) = −L−m, τ(Hm) = −H−m for all m ∈ Z. In addition, suppose
that (P(φ1, ϕ1, θ1), [, ], ◦1) is a post-Lie algebra. Then (P(φ2, ϕ2, θ2), [, ], ◦2) is
a post-Lie algebra and τ is a isomorphism from P(φ1, ϕ1, θ1) to P(φ2, ϕ2, θ2)
if and only if

(23)

φ2(m,n) = −φ1(−m,−n),
ϕ2(m,n) = −ϕ1(−m,−n),
θ2(m,n) = −θ1(−m,−n).

Proof. Clearly, τ is a Lie automorphism of the W-algebra W (2, 2). Suppose
that (P(φ2, ϕ2, θ2), [, ], ◦2) is a post-Lie algebra and τ is a post-Lie isomorphism
from P(φ1, ϕ1, θ1) to P(φ2, ϕ2, θ2). Then from

τ(Lm ◦1 Ln) = −φ1(m,n)L−(m+n),
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τ(Lm ◦1 Hn) = −ϕ1(m,n)H−(m+n),

τ(Hm ◦1 Ln) = −θ1(m,n)H−(m+n)

and

τ(Lm) ◦2 τ(Ln) = φ2(−m,−n)L−(m+n),

Table 2. Values of f and g satisfying (12) and (13), where
a, b ∈ C.

Cases f(n) from Table 1 g(n)

WP1
1 P1 g(Z) = 0

WP1
2 P1 g(Z) = −1

WP2
1 P2 g(Z) = 0

WP2
2 P2 g(Z) = −1

WP
a
3

1 Pa3 g(Z) = 0,

WP
a
3

2 Pa3 g(Z) = −1

WP
a,b
3

3 Pa3 g(Z>0) = −1, g(Z<0) = 0, g(0) = b

WP
a
3

4 Pa3 g(Z>2) = −1, g(Z61) = 0

WP
a
3

5 Pa3 g(Z>−1) = −1, g(Z6−2) = 0

WP
a
4

1 Pa4 g(Z) = 0

WP
a
4

2 Pa4 g(Z) = −1

WP
a,b
4

3 Pa4 g(Z>0) = 0, g(Z<0) = −1, g(0) = b

WP
a
4

4 Pa4 g(Z>−1) = 0, g(Z6−2) = −1

WP
a
4

5 Pa4 g(Z>2) = 0, g(Z61) = −1

WP5
1 P5 g(Z) = 0

WP5
2 P5 g(Z) = −1

WP5
3 P5 g(Z>2) = −1, g(Z61) = 0

WP5
4 P5 g(Z>0) = −1, g(Z60) = 0

WP6
1 P6 g(Z) = 0

WP6
2 P6 g(Z) = −1

WP6
3 P6 g(Z>2) = 0, g(Z61) = −1

WP6
4 P6 g(Z>0) = 0, g(Z60) = −1

WP7
1 P7 g(Z) = 0

WP7
2 P7 g(Z) = −1

WP7
3 P7 g(Z>−1) = 0, g(Z6−2) = −1

WP7
4 P7 g(Z>0) = 0, g(Z<0) = −1

WP8
1 P8 g(Z) = 0,

WP8
2 P8 g(Z) = −1,

WP8
3 P8 g(Z>−1) = −1, g(Z6−2) = 0,

WP8
4 P8 g(Z>0) = −1, g(Z<0) = 0.
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τ(Lm) ◦2 τ(Hn) = ϕ2(−m,−n)H−(m+n),

τ(Hm) ◦2 τ(Ln) = θ2(−m,−n)H−(m+n)

we see that (23) holds. Conversely, suppose that (23) holds. Then, by using
Lemma 2.2 and (P(φ1, ϕ1, θ1), [, ], ◦1) is a post-Lie algebra, we know that there
are complex-valued functions f1, g1 on Z and a complex number µ1 such that

φ1(m,n) = (m− n)f1(m),(24)

ϕ1(m,n) = (m− n)f1(m) + δm,0µ1,(25)

θ1(m,n) = (m− n)g1(m),(26)

(m−n)(f1(m+n)+f1(m)f1(m+n)+f1(n)f1(m+n)−f1(m)f1(n)) = 0,(27)

(n−m)(g1(m+n)+f1(m)g1(m+n)+g1(n)g1(m+n)−f1(m)g1(n)) = 0,(28)

(m−n)(f1(m)+f1(n)+1)δm+n,0µ1 = 0(29)

for all m,n ∈ Z. It follows by (24), (25), (26) and (23) that

φ2(m,n) = −φ1(−m,−n) = −(n−m)f1(−m) = (m− n)f2(m),(30)

ϕ2(m,n) = −ϕ1(−m,−n) = −(n−m)f1(−m)− δm,0µ1(31)

= (m− n)f2(m) + δm,0µ2,

θ2(m,n) = −θ1(−m,−n) = −(n−m)g1(−m) = (m− n)g2(m),(32)

where f2, g2 are complex-valued functions on Z and µ2 is a complex number
determined by f2(m) = f1(−m), g2(m) = g1(−m) and µ2 = −µ1.

Furthermore, by (27), (28) and (29) with f2(m) = f1(−m), µ2 = −µ1 we
obtain

(m−n)(f2(m+n)+f2(m)f2(m+n)+f2(n)f2(m+n)−f2(m)f2(n)) = 0,(33)

(n−m)(g2(m+n)+f2(m)g2(m+n)+f2(n)g2(m+n)−f2(m)g2(n)) = 0,(34)

(m−n)(f2(m)+f2(n)+1)δm+n,0µ2 = 0.(35)

In view of (30)-(35), it follows by Lemma 2.2 that P(φ2, ϕ2, θ2) is a post-Lie
algebra. The remainder is to prove that τ is a isomorphism between post-Lie
algebras. But one has

τ(Lm ◦1 Ln) = −φ1(m,n)L−(m+n) = φ2(−m,−n)L−(m+n) = τ(Lm) ◦2 τ(Ln),

τ(Lm ◦1Hn) = −ϕ1(m,n)H−(m+n) = ϕ2(−m,−n)H−(m+n) = τ(Lm)◦2 τ(Hn),

τ(Hm ◦1 Ln) = −θ1(m,n)H−(m+n) = θ2(−m,−n)H−(m+n) = τ(Hm) ◦2 τ(Ln),

and τ(Hm ◦1 Hn) = 0 = τ(Hm) ◦2 τ(Hn), which completes the proof. �

We now can prove the main theorem of this paper as follows.

Theorem 2.6. A graded post-Lie algebra structure on W (2, 2) satisfying (5)-
(8) must be one of the following types (in every case Hm ◦ Hn = 0) for all
m,n ∈ Z,

(WP1
1 ) : Lm ◦P1

1 Ln = 0, Lm ◦P1
1 Hn = 0, Hm ◦P1

1 Ln = 0;
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(WP1
2 ) : Lm ◦P1

2 Ln = 0, Lm ◦P1
2 Hn = 0, Hm ◦P1

2 Ln = (n−m)Hm+n;

(WP2
1 ) : Lm◦P2

1 Ln = (n−m)Lm+n, Lm◦P2
1 Hn = (n−m)Hm+n, Hm◦P2

1 Ln = 0;

(WP2
2 ) : Lm ◦P2

2 Ln = (n−m)Lm+n, Lm ◦P2
2 Hn = (n−m)Hm+n,

Hm ◦P2
2 Ln = (n−m)Hm+n;

(WP3
i,µ) : i = 1, 2, . . . , 5,

Lm ◦
Pa

3
i,µ Ln =

 (n−m)Lm+n, m > 0,
−naLn, m = 0,

0, m < 0;

Lm ◦
Pa

3
i,µ Hn =

 (n−m)Hm+n, m > 0,
(−na+ µ)Hn, m = 0,

0, m < 0;

Hm ◦
Pa,b

3
i,µ Ln = δi,2(n−m)Hm+n

+ δi,3


(n−m)Hm+n, m > 0,

−nbHn, m = 0,

0, m < 0;

+ δi,4

{
(n−m)Hm+n, m > 2,

0, m 6 1;

+ δi,5

{
(n−m)Hm+n, m > −1,

0, m 6 −2;

(WP
a
4

i,µ ) : i = 1, 2, . . . , 5,

Lm ◦
Pa

4
i,µ Ln =

 (n−m)Lm+n, m < 0,
−naLn, m = 0,

0, m > 0;

Lm ◦
Pa

4
i,µ Hn =

 (n−m)Hm+n, m < 0,
(−na+ µ)Hn, m = 0,

0, m > 0;

Hm ◦
Pa,b

4
i,µ Ln = δi,2(n−m)Hn+m

+ δi,3


(n−m)Hm+n, m < 0,

−nbHn, m = 0,

0, m > 0;

+ δi,4

{
(n−m)Hm+n, m 6 −2,

0, m > −1;

+ δi,5

{
(n−m)Hm+n, m 6 1,

0, m > 2;
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(WP5
j ) : j = 1, . . . , 4,

Lm ◦P5
j Ln =

{
(n−m)Lm+n, m > 2,

0, m 6 1;

Lm ◦P5
j Hn =

{
(n−m)Hm+n, m > 2,

0, m 6 1;

Hm ◦P5
j Ln = δj,2(n−m)Hm+n

+ δj,3

{
(n−m)Hm+n, m > 2,

0, m 6 1;

+ δj,4

{
(n−m)Hm+n, m > 0,

0, m 6 0;

(WP6
j ) : j = 1, . . . , 4,

Lm ◦P6
j Ln =

{
(n−m)Lm+n, m 6 1,

0, m > 2;

Lm ◦P6
j Hn =

{
(n−m)Hm+n, m 6 1,

0, m > 2;

Hm ◦P6
j Ln = δj,2(n−m)Hm+n

+ δj,3

{
(n−m)Hm+n, m 6 1,

0, m > 2;

+ δj,4

{
(n−m)Hm+n, m 6 0,

0, m > 0;

(WP7
j ) : j = 1, . . . , 4,

Lm ◦P7
j Ln =

{
(n−m)Lm+n, m 6 −2,

0, m > −1;

Lm ◦P7
j Hn =

{
(n−m)Hm+n, m 6 −2,

0, m > −1;

Hm ◦P7
j Ln = δj,2(n−m)Hm+n

+ δj,3

{
(n−m)Hm+n, m 6 −2,

0, m > −1;

+ δj,4

{
(n−m)Hm+n, m < 0,

0, m > 0;

(WP8
j ) : j = 1, . . . , 4,

Lm ◦P8
j Ln =

{
(n−m)Lm+n, m > −1,

0, m 6 −2;
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Lm ◦P8
j Hn =

{
(n−m)Hm+n, m > −1,

0, m 6 −2;

Hm ◦P8
j Ln = δj,2(n−m)Hm+n

+ δj,3

{
(n−m)Hm+n, m > −1,

0, m 6 −2;

+ δj,4

{
(n−m)Hm+n, m > 0,

0, m < 0;

where a, b, µ ∈ C. Conversely, the above types are all the graded post-Lie al-
gebra structure satisfying (5)-(8) on W (2, 2). Furthermore, the post-Lie alge-

bras WP
a
3

i , WP5
j , WP6

j and WP
a
4

i,µ are isomorphic to the post-Lie algebras WP
a
4

i ,

WP7
j , WP8

j and WP
a
3

i,µ , i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3, 4}, respectively, and
other post-Lie algebras are not mutually isomorphic.

Proof. Suppose that (W, [, ], ◦) is a post-Lie algebra structure satisfying (5)-(8)
on W (2, 2). By Lemma 2.2, there are complex-valued functions f , g on Z and
µ ∈ C such that (9)-(14) hold. Below two cases of µ are discussed.

Case (I) µ = 0. In this case, f and g satisfy (12) and (13) but (14) is
disappeared due to µ = 0. By Lemma 2.4, the 30 cases of f, g listed in Table 2
are established. Thus, by (9)-(11) with µ = 0, we know that the graded post-
Lie algebra structure on W (2, 2) algebra must be one of the above 30 types.

They are exactly the 30 forms described in the theorem but the cases of WPk
i,µ ,

k = 3, 4, i = 1, 2, . . . , 5, should with condition µ = 0.
Case (II) µ 6= 0. Because f and g satisfy (12) and (13), it follows by Lemma

2.4 that the 30 cases of f, g listed in Table 2 can happen. In view of (14), we
obtain

f(m) + f(−m) = −1 for all m 6= 0.

This, together with a simple checking, yields the only 10 cases as WPk
i,µ , k =

3, 4, i = 1, 2, . . . , 5, with µ 6= 0 are right. Thus, by (9)-(11) with µ 6= 0, we get
the corresponding post-Lie algebra structures.

Clearly, they are all graded post-Lie algebra structures on the W (2, 2) alge-

bra. Finally, by Lemma 2.5 we know that the post-Lie algebrasWP
a
3

i,µ ,WP5
j and

WP6
j are isomorphic to the post-Lie algebrasWP

a
4

i,µ ,WP7
j andWP8

j respectively,
and the other post-Lie algebras are not mutually isomorphic. �

Remark 2.7. Theorem 2.6 tells us that, up to isomorphism, there are 17 types
of graded post-Lie algebra structures satisfying (5)-(8) on the W (2, 2) algebra,

that isWP1

k ,WP2

k ,WP
a
3

i,µ ,WP5
j andWP6

j where k ∈ {1, 2}, i ∈ {1, 2, 3, 4, 5} and

j ∈ {1, 2, 3, 4}.

From Theorem 2.6 and Proposition 1.2 we can give some Lie algebras as
follows.
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Proposition 2.8. Up to isomorphism, the post-Lie algebras in Theorem 2.6
give rise to the following 11 Lie algebras on the space with C-basis {Li, Hi | i ∈
Z}, and with the bracket {, } defined by Proposition 1.2 (in every case {Hm, Hn}
= 0):

(LWP1
1 ) : {Lm, Ln}P1

1 = (m− n)Lm+n for all m,n ∈ Z;

{Lm, Hn}P1
1 = (m− n)Hm+n for all m,n ∈ Z;

(LWP1
2 ) : {Lm, Ln}P1

2 = (m− n)Lm+n for all m,n ∈ Z;

{Lm, Hn}P1
2 = 0 for all m,n ∈ Z;

(LWP
a
3

1,µ) : {Lm, Ln}
Pa

3
1,µ =


(n−m)Lm+n, m, n > 0,
(m− n)Lm+n, m, n < 0,
−naLn, m = 0, n > 0,
−n(a+ 1)Ln, m = 0, n < 0,
0, otherwise;

{Lm, Hn}
Pa

3
1,µ =

(m− n)Hm+n, m < 0,
(−n(a+ 1) + µ)Hn, m = 0,
0, m > 0;

(LWP
a
3

2,µ) : {Lm, Ln}
Pa

3
2,µ = {Lm, Ln}

Pa
3

1,µ,

{Lm, Hn}
Pa

3
2,µ =

(n−m)Hm+n, m > 0,
(−na+ µ)Hn, m = 0,
0, m < 0;

(LWP
a,b
3

3,µ ) : {Lm, Ln}
Pa,b

3
3,µ = {Lm, Ln}

Pa
3

1,µ,

{Lm, Hn}
Pa,b

3
3,µ =



(n−m)Hm+n, m, n > 0,
(m− n)Hm+n, m, n < 0,
(−na+ µ)Hn, m = 0, n > 0,
(−n(a+ 1) + µ)Hn, m = 0, n < 0,
mbHm, m > 0, n = 0,
m(b+ 1)Hm, m < 0, n = 0,
0, otherwise;

(LWP
a
3

4,µ) : {Lm, Ln}
Pa

3
4,µ = {Lm, Ln}

Pa
3

1,µ,

{Lm, Hn}
Pa

3
4,µ =


(n−m)Hm+n, m > 0, n > 2,
(m− n)Hm+n, m < 0, n 6 1,
(−na+ µ)Hn, m = 0, n > 2,
(−n(a+ 1) + µ)Hn, m = 0, n 6 1,
0, otherwise;

(LWP
a
3

5,µ) : {Lm, Ln}
Pa

3
5,µ = {Lm, Ln}

Pa
3

1,µ,

{Lm, Hn}
Pa

3
5,µ =


(n−m)Hm+n, m > 0, n > −1,
(m− n)Hm+n, m < 0, n 6 −2,
(−na+ µ)Hn, m = 0, n > −1,
(−n(a+ 1) + µ)Hn, m = 0, n 6 −2,
0, otherwise;
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(LWP5
1 ) : {Lm, Ln}P5

1 =

(n−m)Lm+n, m, n > 2,
(m− n)Lm+n, m, n 6 1,
0, otherwise;

{Lm, Hn}P5
1 =

{
0, m > 2,
(m− n)Hm+n, m 6 1;

(LWP5
2 ) : {Lm, Ln}P5

2 = {Lm, Ln}P5
1 ,

{Lm, Hn}P5
2 =

{
(n−m)Hm+n, m > 2,
0, m 6 1;

(LWP5
3 ) : {Lm, Ln}P5

3 = {Lm, Ln}P5
1 ,

{Lm, Hn}P5
3 =

(n−m)Hm+n, m, n > 2,
(m− n)Hm+n, m, n 6 1,
0, otherwise;

(LWP5
4 ) : {Lm, Ln}P5

4 = {Lm, Ln}P5
1 ,

{Lm, Hn}P5
4 =

(n−m)Hm+n, m > 2, n > 0,
(m− n)Hm+n, m 6 1, n 6 0,
0, otherwise

where a, b, µ ∈ C.

Proof. Theorem 2.6 tells us that, up to isomorphism, there are 17 types of
graded post-Lie algebra structure on W (2, 2) satisfying (5)-(8), which induced

17 types of Lie algebras by Proposition 1.2, and here are denoted by LWP1

k ,

LWP2

k , LWP
a
3

i,µ , LWP5
j and LWP6

j where k ∈ {1, 2}, i ∈ {1, 2, 3, 4, 5} and j ∈
{1, 2, 3, 4}. On the other hand, the Lie algebras LWP1

k , LWP5
j are isomorphic to

the Lie algebras LWP2

k , LWP6
j respectively through the linear transformation

Lm → −L−m, Hm → −H−m. The conclusions are easily deducible. �

3. Application to Rota-Baxter operators

Lemma 3.1 (see [1]). Let L be a complex Lie algebra and R : L→ L a Rota-
Baxter operator of weight 1. Define a new operation x ◦ y = [R(x), y] on L.
Then (L, [, ], ◦) is a post-Lie algebra.

In this section, by using Lemma 3.1 and Theorem 2.6, we mainly consider
the homogeneous Rota-Baxter operator R of weight 1 on the W-algebra W (2, 2)
given by

(36) R(Lm) = f(m)Lm, R(Hm) = g(m)Hm

for all m ∈ Z, where f, g are complex-valued functions on Z. We will prove the
following.

Theorem 3.2. A homogeneous Rota-Baxter operator R of weight 1 satisfying
(36) on the W-algebra W (2, 2) must be one of the following types (where a, b ∈
C) for all m,n ∈ Z,

(RP1
1 ) : R(Lm) = 0, R(Hm) = 0;
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(RP1
2 ) : R(Lm) = 0, R(Hm) = −Hm;

(RP2
1 ) : R(Lm) = −Lm, R(Hm) = 0;

(RP2
2 ) : R(Lm) = −Lm, R(Hm) = −Hm;

(RP
a
3

1 ) : R(Lm) =


−Lm, m > 0,

aL0, m = 0,

0, m < 0;

R(Hn) = 0;

(RP
a
3

2 ) : R(Lm) =


−Lm, m > 0,

aL0, m = 0,

0, m < 0;

R(Hn) = −Hn;

(RP
a,b
3

3 ) : R(Lm) =


−Lm, m > 0,

aL0, m = 0,

0, m < 0;

R(Hn) =


−Hn, n > 0,

bH0, n = 0,

0, n < 0;

(RP
a
3

4 ) : R(Lm) =


−Lm, m > 0,

aL0, m = 0,

0, m < 0;

R(Hn) =

{
−Hn, n > 2,

0, n 6 1;

(RP
a
3

5 ) : R(Lm) =


−Lm, m > 0,

aL0, m = 0,

0, m < 0;

R(Hn) =

{
−Hn, n > −1,

0, n 6 −2;

(RP
a
4

1 ) : R(Lm) =


−Lm, m < 0,

aL0, m = 0,

0, m > 0;

R(Hn) = 0;

(RP
a
4

2 ) : R(Lm) =


−Lm, m < 0,

aL0, m = 0,

0, m > 0;

R(Hn) = −Hn;

(RP
a
4

3 ) : R(Lm) =


−Lm, m < 0,

aL0, m = 0,

0, m > 0;

R(Hn) =


−Hn, n < 0,

bH0, n = 0,

0, m > 0;

(RP
a
4

4 ) : R(Lm) =


−Lm, m < 0,

aL0, m = 0,

0, m > 0;

R(Hn) =

{
−Hn, n 6 −2,

0, n > −1;

(RP
a
4

5 ) : R(Lm) =


−Lm, m < 0,

aL0, m = 0,

0, m > 0;

R(Hn) =

{
−Hn, n 6 1,

0, n > 2;

(RP5
1 ) : R(Lm) =

{
−Lm, m > 2,

0, m 6 1;
R(Hn) = 0;
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(RP5
2 ) : R(Lm) =

{
−Lm, m > 2,

0, m 6 1;
R(Hn) = −Hn;

(RP5
3 ) : R(Lm) =

{
−Lm, m > 2,

0, m 6 1;
R(Hn) =

{
−Hn, n > 2,

0, n 6 1;

(RP5
4 ) : R(Lm) =

{
−Lm, m > 2,

0, m 6 1;
R(Hn) =

{
−Hn, n > 0,

0, n 6 0;

(RP6
1 ) : R(Lm) =

{
−Lm, m 6 1,

0, m > 2;
R(Hn) = 0;

(RP6
2 ) : R(Lm) =

{
−Lm, m 6 1,

0, m > 2;
R(Hn) = −Hn;

(RP6
3 ) : R(Lm) =

{
−Lm, m 6 1,

0, m > 2;
R(Hn) =

{
−Hn, n 6 1,

0, n > 2;

(RP6
4 ) : R(Lm) =

{
−Lm, m 6 1,

0, m > 2;
R(Hn) =

{
−Hn, n 6 0,

0, n > 0;

(RP7
1 ) : R(Lm) =

{
−Lm, m 6 −2,

0, m > −1;
R(Hn) = 0;

(RP7
2 ) : R(Lm) =

{
−Lm, m 6 −2,

0, m > −1;
R(Hn) = −Hn;

(RP7
3 ) : R(Lm) =

{
−Lm, m 6 −2,

0, m > −1;
R(Hn) =

{
−Hn, n > −1,

0, n 6 −2;

(RP7
4 ) : R(Lm) =

{
−Lm, m 6 −2,

0, m > −1;
R(Hn) =

{
−Hn, n < 0,

0, n > 0;

(RP8
1 ) : R(Lm) =

{
−Lm, m > −1,

0, m 6 −2;
R(Hn) = 0;

(RP8
2 ) : R(Lm) =

{
−Lm, m > −1,

0, m 6 −2,
R(Hn) = −Hn;

(RP8
3 ) : R(Lm) =

{
−Lm, m > −1,

0, m 6 −2,
R(Hn) =

{
−Hn, n > −1,

0, n 6 −2,

(RP8
4 ) : R(Lm) =

{
−Lm, m > −1,

0, m 6 −2,
R(Hn) =

{
−Hn, n > 0,

0, n < 0.

Proof. In view of Lemma 3.1, if we define a new operation x ◦ y = [R(x), y] on
W (2, 2), then (W (2, 2), [, ], ◦) is a post-Lie algebra. By (36), we have

Lm ◦ Ln = [R(Lm), Ln] = (m− n)f(m)Lm+n,

Lm ◦Hn = [R(Lm), Hn] = (m− n)f(m)Hm+n,
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Hm ◦ Ln = [R(Hm), Ln] = (m− n)g(m)Hm+n,

and Hm◦Hn = [R(Hm), Hn] = 0 for all m,n ∈ Z. This means that (W (2, 2), [, ],
◦) is a graded post-Lie algebra structure satisfying (5)-(8) with φ(m,n) =
(m−n)f(m), ϕ(m,n) = (m−n)f(m) and θ(m,n) = (m−n)g(m). By Theorem
2.6, we see that f , g must be of the 30 cases listed in Table 2, which can yield
the 30 forms of R one by one. It is easy to verify that every form of R listed
in the above is a Rota-Baxter operator of weight 1 satisfying (36). The proof
is completed. �

4. Application to Yang-Baxter equation

First we give some notations. Let ad : g → gl(g) be the adjoint represen-
tation of a Lie algebra g defined by ad(x)(y) = [x, y] for any x, y ∈ g. Let
ad∗ : g → gl(g∗) be the dual representation of the adjoint representation of g.
On the vector space g ⊕ g∗, there is a natural Lie algebra structure (denoted
by gnad∗ g∗) given by

[x1 + f1, x2 + f2] = [x1, x2] + ad∗(x1)f2 − ad∗(x2)f1, ∀x1, x2 ∈ g, f1, f2 ∈ g∗.

A linear map is said to be of finite rank if its image has finite dimension.
A linear operator R on g of finite rank can be identified as an element in
g⊗g∗ ⊂ (gnad∗ g∗)⊗(gnad∗ g∗) as follows. Let {ei}i∈I be a basis of ImR, then
for x ∈ g, R(x) can be written as a linear combination of the basis. Namely,
for each i ∈ I there exists a unique linear functional Ri ∈ g∗ such that

R(x) =
∑
i∈I

Ri(x)ei, ∀x ∈ g.

From R is of finite rank we know that I is finite. Then we have

R =
∑
i∈I

ei ⊗Ri ∈ g⊗ g∗ ⊂ (gnad∗ g∗)⊗ (gnad∗ g∗).

Lemma 4.1 ([13]). Let g be a Lie algebra and R : g → g a balanced linear
map. Then R is a Rota-Baxter operator of weight 1 on g if and only if both
(R − R21) + Id and (R − R21) − Id21 are solutions of the formal CYBE on
gnad∗ g∗.

Lemma 4.2 ([13]). R is a Rota-Baxter operator of weight 1 on a Lie algebra
g if and only if so is −R− Id on g and

((−R− Id)− (−R− Id)21) + Id = −((R−R21)− Id21).

In this paper, we only list the solutions of the CYBE obtained from (R−R21)+
Id. Note that Id =

∑
m∈Z Lm ⊗ L∗m +

∑
n∈ZHn ⊗H∗n for W (2, 2).

By [13], a formal tensor r =
∑
i,j∈I aijei ⊗ ej ∈ g⊗̂g, is called a solution of

the formal CYBE if it is row-finite and column-finite and satisfies

[[r]](ei, ej , ek) :=
∑
s,t∈I

(Cistasjatk + aisC
j
statk + aisajtC

k
st) = 0
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for all i, j, k ∈ I, where Cirs are the structural coefficients of g. A linear operator
R on g can be identified as an element in g⊗̂g∗ ⊂ (g nad∗ g∗)⊗̂(g nad? g∗) as
follows. Let {ei}i∈I be a basis of g and {e∗i }i∈I be its dual defined by

e∗i (ej) = δij , ∀i, j ∈ I.

By Zorn’s lemma, {e∗i }i∈I can be extended to a basis of g∗, say {e∗i }i∈I∪{fi}i∈J .
Then we have

R =
∑
i∈I

R(ei)⊗ e∗i +
∑
j∈J

0⊗ fj ∈ g⊗̂g∗ ⊂ (gnad∗ g∗)⊗̂(gnad? g∗).

By a similar argument as in [13], we have the following theorem.

Theorem 4.3. Lemma 4.2 gives the following solutions of the formal CYBE
on W (2, 2)nad∗W (2, 2)∗ from the Rota-Baxter operators of weight 1 on W (2, 2)
given in Theorem 3.2, for some where a, b ∈ C:

(YP1
1 ) : rP1

1 =
∑
m∈Z Lm ⊗ L∗m +

∑
n∈ZHn ⊗H∗n;

(YP1
2 ) : rP1

2 =
∑
m∈Z Lm ⊗ L∗m +

∑
n∈ZH

∗
n ⊗Hn;

(YP2
1 ) : rP2

1 =
∑
m∈Z L

∗
m ⊗ Lm +

∑
n∈ZHn ⊗H∗n;

(YP2
2 ) : rP2

2 =
∑
m∈Z L

∗
m ⊗ Lm +

∑
n∈ZH

∗
n ⊗Hn;

(YP
a
3

1 ) : r
Pa

3
1 =

∑
m<0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m>0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n∈Z

Hn ⊗H∗n;

(YP
a
3

2 ) : r
Pa

3
2 =

∑
m<0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m>0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n∈Z

H∗n ⊗Hn;

(YP
a,b
3

3 ) : r
Pa,b

3
3 =

∑
m<0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0

+
∑
m>0

L∗m ⊗ Lm − aL∗0 ⊗ L0

+
∑
n<0

Hn ⊗H∗n + (b+ 1)H0 ⊗ L∗0

+
∑
n>0

H∗n ⊗Hn − bH∗0 ⊗H0;

(YP
a
3

4 ) : r
Pa

3
4 =

∑
m<0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m>0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n≤1

Hn ⊗H∗n +
∑
n>2

H∗n ⊗Hn;
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(YP
a
3

5 ) : r
Pa

3
5 =

∑
m<0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m>0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n6−2

Hn ⊗H∗n +
∑
n≥−1

H∗n ⊗Hn;

(YP
a
4

1 ) : r
Pa

4
1 =

∑
m>0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m<0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n∈Z

Hn ⊗H∗n;

(YP
a
4

2 ) : r
Pa

4
2 =

∑
m>0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m<0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n∈Z

H∗n ⊗Hn;

(YP
a,b
4

3 ) : r
Pa,b

4
3 =

∑
m>0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m<0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n>0

Hn ⊗H∗n + (b+ 1)H0 ⊗H∗0

+
∑
n<0

H∗n ⊗Hn − bH∗0 ⊗H0;

(YP
a
4

4 ) : r
Pa

4
4 =

∑
m>0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m<0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n>−1

Hn ⊗H∗n +
∑
n≤−2

H∗n ⊗Hn;

(YP
a
4

5 ) : r
Pa

4
5 =

∑
m>0

Lm ⊗ L∗m + (a+ 1)L0 ⊗ L∗0 +
∑
m<0

L∗m ⊗ Lm

− aL∗0 ⊗ L0 +
∑
n≥2

Hn ⊗H∗n +
∑
n61

H∗n ⊗Hn;

(YP5
1 ) : rP5

1 =
∑
m61

Lm ⊗ L∗m +
∑
m≥2

L∗m ⊗ Lm +
∑
n∈Z

Hn ⊗H∗n;

(YP5
2 ) : rP5

2 =
∑
m61

Lm ⊗ L∗m +
∑
m≥2

L∗m ⊗ Lm +
∑
n∈Z

H∗n ⊗Hn;

(YP5
3 ) : rP5

3 =
∑
m61

Lm ⊗ L∗m +
∑
m≥2

L∗m ⊗ Lm +
∑
n61

Hn ⊗H∗n

+
∑
n≥2

H∗n ⊗Hn;

(YP5
4 ) : rP5

4 =
∑
m61

Lm ⊗ L∗m +
∑
m≥2

L∗m ⊗ Lm +
∑
n≤0

Hn ⊗H∗n

+
∑
n>0

H∗n ⊗Hn;



1746 X. TANG AND Y. ZHONG

(YP6
1 ) : rP6

1 =
∑
m>2

Lm ⊗ L∗m +
∑
m≤1

L∗m ⊗ Lm +
∑
n∈Z

Hn ⊗H∗n;

(YP6
2 ) : rP6

2 =
∑
m>2

Lm ⊗ L∗m +
∑
m≤1

L∗m ⊗ Lm +
∑
n∈Z

H∗n ⊗Hn;

(YP6
3 ) : rP6

3 =
∑
m>2

Lm ⊗ L∗m +
∑
m≤1

L∗m ⊗ Lm +
∑
n>2

Hn ⊗H∗n

+
∑
n≤1

H∗n ⊗Hn;

(YP6
4 ) : rP6

4 =
∑
m>2

Lm ⊗ L∗m +
∑
m≤1

L∗m ⊗ Lm +
∑
n>0

Hn ⊗H∗n

+
∑
n≤0

H∗n ⊗Hn;

(YP7
1 ) : rP7

1 =
∑
m>−1

Lm ⊗ L∗m +
∑
m≤−2

L∗m ⊗ Lm +
∑
n∈Z

Hn ⊗H∗n;

(YP7
2 ) : rP7

2 =
∑
m>−1

Lm ⊗ L∗m +
∑
m≤−2

L∗m ⊗ Lm +
∑
n∈Z

H∗n ⊗Hn;

(YP7
3 ) : rP7

3 =
∑
m>−1

Lm ⊗ L∗m +
∑
m≤−2

L∗m ⊗ Lm +
∑
n≤−2

Hn ⊗H∗n

+
∑
n>−1

H∗n ⊗Hn;

(YP7
4 ) : rP7

4 =
∑
m>−1

Lm ⊗ L∗m +
∑
m≤−2

L∗m ⊗ Lm +
∑
n≥0

Hn ⊗H∗n

+
∑
n<0

H∗n ⊗Hn;

(YP8
1 ) : rP8

1 =
∑
m6−2

Lm ⊗ L∗m +
∑
m≥−1

L∗m ⊗ Lm +
∑
n∈Z

Hn ⊗H∗n;

(YP8
2 ) : rP8

2 =
∑
m6−2

Lm ⊗ L∗m +
∑
m≥−1

L∗m ⊗ Lm +
∑
n∈Z

H∗n ⊗Hn;

(YP8
3 ) : rP8

3 =
∑
m6−2

Lm ⊗ L∗m +
∑
m≥−1

L∗m ⊗ Lm +
∑
n6−2

Hn ⊗H∗n

+
∑
n≥−1

H∗n ⊗Hn;

(YP8
4 ) : rP8

4 =
∑
m6−2

Lm ⊗ L∗m +
∑
m≥−1

L∗m ⊗ Lm +
∑
n<0

Hn ⊗H∗n

+
∑
n≥0

H∗n ⊗Hn.
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