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A NOTE ON THE NUMERICAL RANGE
OF AN OPERATOR

YounNGol YANG

1. Introduction

The concepts of the numerical range of an operator on a Hilbert space and on
a Banach space were introduced by Toeplitz in 1918 and Bauer in 1962 respee-
tively. Bauer’s paper was concerned only with finite dimensional Banach spaces,
but the concept of numerical range that he introduced is available without
restriction of the dimension [1,2]. In this paper, we define a C*-algebra spatial
numerical range of an operator on C*-algebra valued inner product modules
introduced by Paschke [4], and give analogous results on these modules as those
on Banach spaces.

2. Preliminaries and spatial numerical ranges

Let B be a C*-algebra. We denote the action of B on a right B-module X
by (x, &) —>xb (x=X, beB). All modules treated below are assumed to have
a vector space structure over the complex numbers C compatible with that of B
in the sense that A(xb) = (Ax)b=x(1b) (z&X, beB, AcC).

DEFINITION 2.1. A pre-Hilbert B-module is a right B-module X equipped
with a conjugate-bilinear map <, : XX X—>B (called a B-valued inner product
on X) satisfying;

(1) Lz, x)=0, x€X and {z,2y=0 only if z=0;

(ii) Lz, =, % x, y€X;

(i) <xb, y)=Lx, wb, z,yX, beD,

For a pre-Hilbert B-module X and a symbol ||-||x defined by ||z||x=|<z, :L'}Il;,
l*Ix is a norm on X [4].

DEFINITION 2.2. A Hilbert B-module is a pre-Hilbert B-module X which is
complete with respect to the norm ||-|ix.

In the rest of this paper, let B be a C*-algebra with a multiplicity identity e
and X a Hilbert B-module. Note that any C*-algebra B is itself a Hilbert B-
module with {z, ¥>=y*2 (z,yeB), and in case B=C, a Hilbert B-module is a
Hilbert space. Let B(X) be the set of all bounded linear operators on X and
A(X) the set of operator T<&B(X) for which there is an operator T*&B(X)
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such that {Tx, y)=d{x, T*y) for any z, y=X. For each Tc A(X), the adjoint
T* is unique and belongs to A(X). We also denote the operator norm on B(X)
by [[-ll. It it easy to show that A(X) isa C*-~algebra with the involution 7T—>
T* and the norm [|-|| [4]. Let S(X) denote the unit sphere of X, B* the dual
space of B, and [](z) the subset of X xXB* defined by 1l (@) ={(x,f)eS(X)
XS(B*) : f({x, 2)) =1}. Given 2€8(X), we put D(B,{x, z))={f=S(B*) :
Ffz, z))=1}.

DEFINITION 2.3. The B-spatial numerical range Wg(T) of an operator T of
A(X) is defined by
Wa(T)={f Tz, 2)) : (z, f)e[1(X)}
and the B-spatial numerical radius wz(T) of T is the number
wp(T)=sup{|2] : & Wg(T)}.

It is easy to prove that wg(.) is a seminorm on ACX), wp(T)=wg(TH*),
wp(T) =T, and

We(T)=U{f(Tz, z)): fED(B, {(x,2))} TreS(X)).

REMARK 2.4. Wp(T)CV(A(X), T) where V(A(X), T)denotes the numerical
range of T of A(X). TFor, given (z, Hell(X), define F on A(X) by F(S)
=f({Sz, =) (ScA(X)). Then FeD(A(X), I) and so f({Tx, o)=F(T)e
V(AX), T) by [1].

LEMMA 2.5. Let P be a subset of [[(X) such that its natural projection x,(P)
={v: (x, £)EP for some f} is dense in S(X). Then for each Te A(X),

inf {%(HIJraTH—l) :a>0}=sup{Re FKTe, ©): G, £reP),

Proof. Let p=sup {Re f({Tz, z)) : (x, f)eP}. By Remark 2.4 and
Theorem 2.5 [1], we have < max {Red: 2 V(AX), 1)) :inf{%{(HI + aTll

—1): a>0}:I;ig%{lll-t»aT]l—l}. (*) It is obvious when 7'=0, so we assume
that T+0. Choose @ such that 0<ad|| TII™%. Let 2&S(X) and £30. Since 1 (P)
is dense in S (X), there exists (y, g)EP such that ||z—yllx<le. We have
Reg({Ty, ) p=|T|l and so |(I~aT)slx=Re g({U—aT)y, y>=1—a Re g({Ty,
w)=1—ap>0. Therefore NI—aT)xllxz1—au—|I—aTls. Since ¢ is arbitrary,
this gives lI~aT)x|xz1~ay, and therefore fI—aT)a|x= (1—aw|zllx (z<
X). If we replace « by (I +a7)z, this gives

IT+aTallxs 12 Id-a2Talx. (xeX), and so

1+a?|TY | T?
|]I+aT|]§J—%!IL. Therefore 7};{\]1 IﬂTH—]}ir—ﬁw;l—_%’]ll, and this with

(%) completes the proof.

By Lemma 2.5 and Theorem 2.5 [1], we have
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sup{Re f({Tz, z)): (z, f) eP)=sup{Re 1: 1€ V(A(X), T)} where P denotes
a subset of J[(X) such that its natural projection z;(P) is dense in S(X). Also
V(A(X), T) is a closed convex set {1]. Thus we obtain the following results;

THEOREM 2. 6. Let P be a subset of [](X) suﬂz that its natural projection
7,(P) is dense in S(X). Then for each TeA(X), co{fTx, ) : (z, f)eP}
=V(A(X), T) where co E denotes the closed convexr hull of a set E.

COROLLARY 2.7. For each T A(X), we have

(i) co Wp(T)=V(AX), T)

(1) wg(T)=sup{|i]| : Ae V(A(X), T)}.

By Theorem 2.6 1], we have Sp(T)Yc V(A(X), T=coWy(T) where Sp(T)
denotes the spectrum of 7.

3. Topological properties

DEFINITION 3.1. The norm X weak* topology in X X B¥ is the product topology
in Xx B* given by the norm topology on X and the weak® topology on B¥,

The following two results are essentially due to Bonsall, Cain and Schneider

(1]

LEMMA 3.2. Let m, denote the natural projection of X > B* onto X, and let E
be a subset of T1{(X) that is relatively closed in 11(X) with respect to the norm:<
weak® topology. Then m,(E) is a (norm) closed subset of X.

Proof. Let x,&m(E) and z,—>ac=X. Then there exist elements f, of S(B¥)

such that (z, f.) €E. By the weak® compactness of the closed unit ball in B¥,
there exists a weak® cluster point f of the sequence {f,} with ||f]=1.
We have f({z, ap)=(f—1) Ko, a)) +f0 K=, 200) +F0 (T 20)) T2,
vy, and so | f(Kx, )1 |(F—f) Kz, )| H|falla—ax, x0) |+ 11
Lz, z—a)) | =1 (o) Ko, )| tia—allx+lle—z,lxlizllx. Since [(f—f)
({x, 2>)| and |la—=z,lly are arbitrarily small for all sufficiently large », it
follows that f({x, x»)=1 and therefore (x, f)e€]|T(X). But E is relatively
closed in [](X) for the norm X weak® topology, and so (z, f)GE and z<
7 (E).

TueoreMm 3.3. [1(X) is a connected subset of XX B¥ with the normXweak*
topology, unless X has dimension one over R.

Proof. Suppose that [](X)=FEUF where E, F are relatively closed in [](X)
for the norm X weak* topology, and ENF=¢. By Lemma 3.2, 7;{E) and =;(F)
are norm closed subsets of X and 7 (E) U (F)=8(X). Suppose that z&r, (E)
Nz (F). Then there are f and g in B¥ such that (2, f)€E and (x, g)EF.
For + with 0:=5t51, we have (tf+(1—bt)g) Ko, o) =tflz, 20) 1—8t)g{a,
2») =1 and hence
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ltf+-nellz1  (0=<t=<1).
Also |ltf+ (-0 gll=tll fll4+ Q-8 lgll=1. Thus we have shown that (r, ¢f-+
(1-Dg) e[l (X) (0=¢=1) which is impossible since ENF=¢. Therefore 71 (E)
Nz (F)=¢. Now if X doesn’t have dimension one over R, then the set S(X)
is connected. Thus we must have 71 (E)=¢ or z;(F)=¢. Therefore [] (X) is
connected.

COROLLARY 3.4. Wy(T) is connected unless X has dimension one over R.

Proof. We have |f((Tzx, 2))—g(Ty, »)|<||Te— Tyllx+l Tylixllz—yllx+
(=) Ty, 92) 1z, 1), (», g)e[l(X)). Therefore the mapping (z, f)—
STz, x)) is a continuous mapping of [1(X) with the relative norm X weak*
topology onto Wg(7T). Therefore by Theorem 2. 3, Wg(T) is connected, unless
X has dimension one over R.
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