• 제목/요약/키워드: on-chip detection

검색결과 325건 처리시간 0.031초

온칩 테스트 로직을 이용한 TSV 결함 검출 방법 (TSV Defect Detection Method Using On-Chip Testing Logics)

  • 안진호
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1710-1715
    • /
    • 2014
  • In this paper, we propose a novel on-chip test logic for TSV fault detection in 3-dimensional integrated circuits. The proposed logic called OTT realizes the input signal delay-based TSV test method introduced earlier. OTT only includes one F/F, two MUXs, and some additional logic for signal delay. Thus, it requires small silicon area suitable for TSV testing. Both pre-bond and post-bond TSV tests are able to use OTT for short or open fault as well as small delay fault detection.

온칩 메모리 내 다중 비트 이상에 대처하기 위한 오류 정정 부호 (Error correction codes to manage multiple bit upset in on-chip memories)

  • Jun, Hoyoon
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1747-1750
    • /
    • 2022
  • As shrinking the semiconductor process into the deep sub-micron to achieve high-density, low power and high performance integrated circuits, MBU (multiple bit upset) by soft errors is one of the major challenge of on-chip memory systems. To address the MBU, single error correction, double error detection and double adjacent error correction (SEC-DED-DAEC) codes have been recently proposed. But these codes do not resolve mis-correction. We propose the SEC-DED-DAEC-TAED(triple adjacent error detection) code without mis-corrections. The generated H-matrix by the proposed heuristic algorithm to accomplish the proposed code is implemented as hardware and verified. The results show that there is no mis-correction in the proposed codes and the 2-stage pipelined decoder can be employed on-chip memory system.

Retina-Motivated CMOS Vision Chip Based on Column Parallel Architecture and Switch-Selective Resistive Network

  • Kong, Jae-Sung;Hyun, Hyo-Young;Seo, Sang-Ho;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.783-789
    • /
    • 2008
  • A bio-inspired vision chip for edge detection was fabricated using 0.35 ${\mu}m$ double-poly four-metal complementary metal-oxide-semiconductor technology. It mimics the edge detection mechanism of a biological retina. This type of vision chip offer several advantages including compact size, high speed, and dense system integration. Low resolution and relatively high power consumption are common limitations of these chips because of their complex circuit structure. We have tried to overcome these problems by rearranging and simplifying their circuits. A vision chip of $160{\times}120$ pixels has been fabricated in $5{\times}5\;mm^2$ silicon die. It shows less than 10 mW of power consumption.

  • PDF

이차항체를 포함하는 수정미소저울 센서 칩을 이용한 사람과 소의 헵토글로빈 측정 (Detection of human and bovine haptoglobin by using quartz crystal microbalance sensor chip containing secondary antibody)

  • 김성일;하인영;최석정
    • 센서학회지
    • /
    • 제18권2호
    • /
    • pp.160-167
    • /
    • 2009
  • In this study, secondary antibody-containing quartz crystal microbalance(QCM) sensor chip was prepared and utilized for the detection of human and bovine haptoglobin. Anti-goat immunoglobulin G antibody, which is a secondary antibody capable of capturing primary antibodies raised in goat, was immobilized through the reaction between hydrazide and aldehyde group prepared on the QCM surface and antibody respectively. The resulting sensor chip showed higher stability in the repeated surface regeneration with acidic dissociation solution as well as requiring lower amount of primary antibody when compared to the protein G sensor chip. The secondary antibody sensor chip was applied for the estimation of bovine and human haptoglobin.

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

진단의학 도구로서의 DNA칩 (DNAchip as a Tool for Clinical Diagnostics)

  • 김철민;박희경
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작 (Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination)

  • 최성환;김동성;권태헌
    • 소성∙가공
    • /
    • 제15권9호
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.

CE-AD기반의 Microfluidic chip을 이용한 Simazine과 Atrazine 그리고 Ametryn Herbicides의 검출 (Detection of Simazine, Atrazine and Ametryn Herbicides on a Microfluidic Chip Based on CE-AD)

  • ;장유철;;;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1688-1689
    • /
    • 2011
  • A simple and rapid capillary electrophoresis method was developed for the quantitative analysis of common triazine herbicides. Cyclic voltammetry was employed to clarify the detection voltage which showed characteristic irreversible cathodic peaks. For the analysis, the mixture of triazine herbicides was applied in a microfluidic chip to determine the CE-separated peaks. Soil sample extracts were analyzed directly after drying and redissolution with the supporting electrolyte but without other pretreatment. The results were comparable to those obtained by HPLC with UV detection. Therefore, this method can be used in the rapid determination of pesticide/herbicide residues.

  • PDF

Development of DNA Chip System for Differential Diagnosis of Porcine Enteric Pathogens

  • Kim, Tae-ju;Cho, Ho-seong;Kim, Yong-hwan;A.W.M. Effendy;Park, Nam-yong
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2003년도 추계학술대회초록집
    • /
    • pp.32-32
    • /
    • 2003
  • Intestinal infections are common in growing pigs and can be caused by multiple pathogens, environmental and management factors [1]. Among the most important viruses in swine enteritis are porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine enteric calicivirus (PECV), porcine group A rotavirus (PRV gp A) and bacteria are Escherichia coli and Salmonella spp. and protozoa is Isospora suis [1]. The DNA chip system can serve as a powerful tool that can be utilized for simultaneous detection of specific pathogenic bacteria strains and viruses [2,3]. The combination of PCR and DNA chip technology will provide a novel method for the detection of porcine enteric pathogens thus revolutionize the diagnosis and management of the disease. The aim of this study is to develop DNA chip system for the rapid and reliable detection of five major porcine enteric pathogens based on oligonucleotide DNA chip hybridization. (omitted)

  • PDF

체류 인자를 이용한, 알부민의 정량 분석용 종이 칩 (Diagnostic Paper Chip for Reliable Quantitative Detection of Albumin using Retention Factor)

  • 정성근;이상호;이창수
    • KSBB Journal
    • /
    • 제28권4호
    • /
    • pp.254-259
    • /
    • 2013
  • Herein we present a diagnostic paper chip that can quantitatively detect albumin without external electronic reader and dispensing apparatus. We fabricated a diagnostic paper chip device by printing wax barrier on the paper and wicking it with citrate buffer and tetrabromophenol blue to detect albumin in sample solution. The paper chip is so simple that we dropped a sample solution at sample pad and measure the ratio of two travel distances of the sample solvent and albumin under the name of retention factor. Our result confirmed that the retention factor was constant in the samples with same concentration of albumin and useful determinant for the measurement of albumin concentration. The paper chip is affordable and equipment-free, and close to ideal point-of-care test in accordance with the assured criteria, outlined by the World Health Organization. We assume that this diagnostic paper chip will expand the concept of colorimetric determination and provide a inexpensive diagnostic method to aging society and developing country.