• Title/Summary/Keyword: octahedral $Co_3O_4$

Search Result 49, Processing Time 0.036 seconds

The Effects of the cis and trans Configurations of Ligands on the Calculated Dipole Moments for $[M(II)O_3N_3]$ and $[Ni(II)O_2N_4]$ Type Complexes ($[M(II)O_3N_3]$$[Ni(II)O_2N_4]$ 형태착물의 쌍극자 모멘트에 대한 리간드의 cis 및 trans 구조의 영향)

  • Sangwoon Ahn;Eu Suh Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.83-94
    • /
    • 1983
  • The effects of cis and trans configurations of ligands for $[M(II)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes [M(II) = Co(III), Ni(II) and Cu(II)] on the calculated dipole moments have been investigated, adpoting the eigenvectors of EHT calculation. The calculated dipole moments for cis complexes are higher than those of trans complexes. The calculated dipole moments for the octahedral trans $[Co(III)O_3N_3]$ type complex fall in the range of experimental values. However the calculated dipole moments for cis $[Ni(II) O_2N_4]$ type complexes fall in the range of the experimental values. These results predicts the trans structure for $[Co(III)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes. Those structures are in agreement with the experimental one (Three bidentate (O-N) ligands in $[M(II)O_3N_3]$ type complexes coordinate to the metal ion and two tridentate (O-N-N) ligands in [Ni(II)O2N4] type complexes coordinate to Ni(II) ion).

  • PDF

Uranyl Peroxide Compound Preparation from the Filtrate for Nuclear Fuel Powder Production Process (핵연료분말 제조공정 여액으로부터 Uranyl-peroxide 화합물의 제조)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.430-437
    • /
    • 1997
  • Uranyl-peroxide compound was prepared by the reaction of excess hydrogen peroxide solution and trace uranium in filtrate from nuclear fuel conversion plant. The $CO_3{^{2-}}$ in filtrate was removed first by heating more than $98^{\circ}C$, because uranyl-peroxide compound could not be precipitated by $CO_3{^{2-}}$ remaining in filtrate. The optimum condition for uranyl-peroxide compound was ageing for 1 hr after controling the pH with $NH_3$ gas and adding the excess $H_2O_2$ of 10ml/lit.-filtrate. Uranium concentration in the filtrate was appeared to 3 ppm after the precipitation of uranyl-peroxide compound, and the chemical composition of this compound was analyzed to $UO_4{\cdot}2NH_4F$ with FT-IR, X-ray diffractometry, TG and chemical analysis. Also, this fine particle, about $1{\sim}2{\mu}m$, could be grown up to $4{\mu}m$ at pH 9.5 and $60^{\circ}C$. The separation efficiency of precipitate from mother liquor was increased with increase of pH and reaction temperature. Otherwise, the crystal form of this particle showed octahedral by SEM and XRD, and $U_3O_8$ powder was obtained by thermal decomposition at $650^{\circ}C$ in air atmosphere.

  • PDF

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

ATOMIC MIGRATION IN MIXED FERRITE $Ni_{x}Co_{1-x}Fe_{2}O_{4}$

  • Lee, Seung-Wha;Park, Seung-Iel;Um, Young-Rang;Lee, Young-Jong;Kim, Sung-Baek;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.778-781
    • /
    • 1995
  • The mixed ferrite $Ni_{x}Co_{1-x}Fe_{2}O_{4}$ have been investigated by X-ray and $M\"{o}ssbauer$ spectoscpy. From the results of X-ray diffraction measurement the structure for this system is spinel, and the lattice constant is in accord with Vegard's law. $M\"{o}ssbauer$ spectra of $Ni_{x}Co_{1-x}Fe_{2}O_{4}$ have been taken at various temperature ranging from 13 to 800 K. The isomer shifts indicate that the valence states of the irons at both A(tetrahedral) and B(octahedral) sithe are found to be in ferric high-spin states. The variation of magnetic hyperfine fields at the A and B sites are explained on the basis on A-B and B-B supertransferred hyperfine interactions. It is found that Debye temperatures for the A and B sites of $CoFe_{2}O_{4}$ and $NiFe_{2}O_{4}$ are found to be ${\theta}_{A}=734{\pm}5K,\;{\theta}_{B}=248{\pm}5K,\;and\;{\theta}_{A}=378{\pm}5K,\;{\theta}_{B}=357{\pm}5K$, respectively. Atomic migration of $Ni_{0.3}Co_{0.7}Fe_{2}O_{4}$ starts near 450 K and increases rapidly with increasing temperature to such a degree that 61 % of the ferric ions at the A site have moved over to the B site by 700 K.

  • PDF

Synthesis and Characterization of Air Stable σ-Bonded ortho-carborane Manganese Metal Complexes $1-[Mn(CO)_5]-2-R-1,2-closo-(σ-C_2B_{10}H_{10}$ and Their Conversion to the Stable ortho-carborane Substituted Fischer-type Carbene Compexes 1-[(CO

  • 김세진;김유혁;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.634-641
    • /
    • 1995
  • The metal-carbon σ-bond cluster complexes 1-Mn(CO)5-2-R-1,2-C2B10H10 (R=CH3 Ia, C6H5 Ib) have been prepared in good yields from readily available carboranyl lithium complexes, 1-Li+-2-R-1,2-C2B10H10- (R=CH3, C6H5), by direct reaction with (CO)5MnBr. These manganese metal complexes are rapidly converted to the corresponding manganese metal carbene complexes, 1-[(CO)4Mn=C(OCH3)(CH3)]-2-R-1,2-C2B10H10 (R=CH3 IIIa, C6H5 IIIb), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3. The crystal structure of IIIb was determined by X-ray diffraction. Thus, complex IIIb crystallizes in the orthorhombic space group P212121 with cell parameters a=15.5537(5), b=19.0697(5), c=7.4286(3) Å, V=2203.4(1) Å3, and Z=4. Of the reflections measured a total of 3805 unique reflections with F2>3σ(F2) was used during subsequent structure refinement. Refinement converged to R1=0.053 and R2=0.091. Structural studies showed that the manganese atom had a slightly distorted pseudo-octahedral configuration about the metal center with the carbene and ortho-carborane occupying the equatorial plane cis-orientation to each other.

Temperature Stable, Low Ringing Noise Memory Cores (온도에 안정하고 잡음이 적은 메모리코어에 대한 연구)

  • 임호빈
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 1978
  • $Zn_{0.105}Co_{0.025}Li_{0.435-1/2x}Ni_x Fe_{2.435-1/2x-y }Mn_y O_4$ 조성의 메모리코어 특성과 $Nb_2O_5$$V_2O_5$의 소량 첨가가 square-loop성질에 주는 영향을 연구하였다. 위의 조성에서 닉켈의 양 x는 0에서 0.15까지, 그리고 망간의 양 y는 0.05에서 0.25까지 변화시켰다. $Nb_2O_5$$V_2O_5$의 양은 각각 위의 화학식에 대하여 0.005에서 0.015까지 변화시켰다. 실험결과에 의하면 $Mn^{+3}$를 octahedral자리에 첨가하였을 때에는 잡음이 감소되었고 메모리코어 squareness와 보자련의 온도계수가 증가하였다. 닉켈을 첨가하였을 때에는 메모리코어의 squareness와 잡음이 증가하였다. $Nb_2O_5$를 소량 첨가하였을 때에는 square-loop성질이 개선되었음에 비하여 $V_2O_5$를 소량 첨가하였을 때에는 square-loop성질이 나빠졌다.

  • PDF

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF