Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.3.308

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method  

Noh, Kwang Mo (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
Lee, Young Bae (Department of Physics, Hanzhong University)
Kwon, Woo Hyun (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
Kang, Jeoung Yun (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
Choi, Won-Ok (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
Chae, Kwang Pyo (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
Publication Information
Abstract
Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.
Keywords
substituted manganese ferrite; sol-gel method; $M{\ddot{o}}ssbauer$ spectroscopy; saturation magnetization; coercivity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 F. J. Burghart, W. Potzel, G. M. Kalvius, E. Schreier, G. Grosse, D. R. Noakes, W. Schafer, W. Kockelmann, S. J. Campbell, W. A. Kaczmarek, A. Martin, and M. K. Krause, Physica B 289, 286 (2000).
2 A. H. Morrish and K. Haneda, J. Appl. Phys. 52, 2497 (1981).
3 K. Oda, T. Yoshio, K. Hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc., Powder Powder Metal. 29, 170 (1982).   DOI
4 V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson, and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993).   DOI
5 W. O. Choi, J. G. Lee, B. S. Kang, and K. P. Chae, J. Magn. 19, 59 (2014).   DOI
6 W. O. Choi, W. H. Kwon, K. P. Chae, and Y. B. Lee, J. Magn. 21, 40 (2016).   DOI
7 C. G. Whinfrey, D. W. Eckort, and A. Tauber, J. Am. Chem. Soc. 82, 2695 (1960).   DOI
8 B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978) p. 102.
9 W. H. Kwon, J. Y. Kang, J. G. Lee, S. W. Lee, and K. P. Chae, J. Magn. 15, 159 (2010).   DOI
10 J. Y. Kang, W. H. Kwon, S. W. Lee, B. S. Kang, and K. P. Chae, J. Korean Phys. Soc. 60, 795 (2012).   DOI
11 W. O. Choi, W. H. Kwon, J. G. Lee, B. S. Kang, and K. P. Chae, J. Korean Phys. Soc. 61, 1812 (2012).   DOI
12 R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967).   DOI
13 M. Z. Schmalzrifd, J. Phys. Chem. 28, 203 (1961).
14 K. J. Kim, H. K. Kim, Y. R. Park, and J. Y. Park, J. Korean Magn. Soc. 16, 23 (2006).   DOI
15 M. K. Shobana, S. Sankar, and V. Rayendran, Material Chem. Phys. 113, 10 (2009).   DOI
16 W. H. Kwon, J. G. Lee, Y. B. Lee, and K. P. Chae, J. Magn. 16, 1 (2011).   DOI
17 N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London (1971) p. 261-266.
18 A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990) p. 217.
19 J. M. Hastings and L. M. Corliss, Phys. Rev. 104, 328 (1965).
20 A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000).   DOI
21 V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz, and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996).   DOI
22 J. C. Ho, H. Hamdeh, Y. Chen, S. Lin, Y. Yao, R. Willey, and S. Oliver, Phys. Rev. B 52, 10122 (1995).   DOI