DOI QR코드

DOI QR Code

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Lee, Young Bae (Department of Physics, Hanzhong University) ;
  • Kwon, Woo Hyun (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Kang, Jeoung Yun (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Choi, Won-Ok (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Chae, Kwang Pyo (Department of Nano Science and Mechatronics Engineering, Nanotechnology Research Center, Konkuk University)
  • Received : 2016.07.13
  • Accepted : 2016.08.31
  • Published : 2016.09.30

Abstract

Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

Keywords

References

  1. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990) p. 217.
  2. J. M. Hastings and L. M. Corliss, Phys. Rev. 104, 328 (1965).
  3. A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  4. N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London (1971) p. 261-266.
  5. V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz, and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996). https://doi.org/10.1016/S0304-8853(96)00277-6
  6. J. C. Ho, H. Hamdeh, Y. Chen, S. Lin, Y. Yao, R. Willey, and S. Oliver, Phys. Rev. B 52, 10122 (1995). https://doi.org/10.1103/PhysRevB.52.10122
  7. F. J. Burghart, W. Potzel, G. M. Kalvius, E. Schreier, G. Grosse, D. R. Noakes, W. Schafer, W. Kockelmann, S. J. Campbell, W. A. Kaczmarek, A. Martin, and M. K. Krause, Physica B 289, 286 (2000).
  8. A. H. Morrish and K. Haneda, J. Appl. Phys. 52, 2497 (1981).
  9. K. Oda, T. Yoshio, K. Hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc., Powder Powder Metal. 29, 170 (1982). https://doi.org/10.2497/jjspm.29.170
  10. V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson, and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993). https://doi.org/10.1016/0304-8853(93)90838-S
  11. W. O. Choi, J. G. Lee, B. S. Kang, and K. P. Chae, J. Magn. 19, 59 (2014). https://doi.org/10.4283/JMAG.2014.19.1.059
  12. W. O. Choi, W. H. Kwon, K. P. Chae, and Y. B. Lee, J. Magn. 21, 40 (2016). https://doi.org/10.4283/JMAG.2016.21.1.040
  13. C. G. Whinfrey, D. W. Eckort, and A. Tauber, J. Am. Chem. Soc. 82, 2695 (1960). https://doi.org/10.1021/ja01496a010
  14. B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978) p. 102.
  15. W. H. Kwon, J. Y. Kang, J. G. Lee, S. W. Lee, and K. P. Chae, J. Magn. 15, 159 (2010). https://doi.org/10.4283/JMAG.2010.15.4.159
  16. J. Y. Kang, W. H. Kwon, S. W. Lee, B. S. Kang, and K. P. Chae, J. Korean Phys. Soc. 60, 795 (2012). https://doi.org/10.3938/jkps.60.795
  17. W. O. Choi, W. H. Kwon, J. G. Lee, B. S. Kang, and K. P. Chae, J. Korean Phys. Soc. 61, 1812 (2012). https://doi.org/10.3938/jkps.61.1812
  18. R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x
  19. M. Z. Schmalzrifd, J. Phys. Chem. 28, 203 (1961).
  20. K. J. Kim, H. K. Kim, Y. R. Park, and J. Y. Park, J. Korean Magn. Soc. 16, 23 (2006). https://doi.org/10.4283/JKMS.2006.16.1.023
  21. M. K. Shobana, S. Sankar, and V. Rayendran, Material Chem. Phys. 113, 10 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.083
  22. W. H. Kwon, J. G. Lee, Y. B. Lee, and K. P. Chae, J. Magn. 16, 1 (2011). https://doi.org/10.4283/JMAG.2011.16.1.001

Cited by

  1. Low temperature preparation, characterization, magnetic measurements, thermal, optical, morphological and photo-catalytic properties of nano-size single phase nickel ferrite NiFe2O4 vol.28, pp.18, 2017, https://doi.org/10.1007/s10854-017-7184-z
  2. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4 vol.70, pp.2, 2017, https://doi.org/10.3938/jkps.70.173