Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.6.453

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide  

Das, Bidhu Bhusan (Department of Chemistry, Functional Materials Chemistry Laboratory, Pondicherry University)
Barman, Bittesh (Department of Chemistry, Functional Materials Chemistry Laboratory, Pondicherry University)
Publication Information
Abstract
Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.
Keywords
Sol-gel synthesis; Powder X-ray diffraction; Magnetic properties; Electron paramagnetic resonance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 241.   DOI
2 Gudiksen, M.S.; Lauhon, L. J.; Wang J. F.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617.   DOI
3 Hgfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49.   DOI
4 Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C.M. Nature 2001, 409, 66.   DOI
5 Hu, J. G,; Odom, T. W.; Lieber, C.M. Acc. Chem. Res. 1999, 32, 435.   DOI
6 Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273.   DOI
7 Yang, P.; Lieber, C. M. Science 1996, 273, 1836.   DOI
8 Gowrishankar, M.; Babu, D. R.; Madeswaran, S. J. Magn. Magn. Mater. 2016, 418, 54.   DOI
9 Ramesh, S.; Ramaclus, J. V.; Mosquera, E.; Das, B. B. RSC Adv. 2016, 6, 6336.   DOI
10 Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, 1697.   DOI
11 Choi, C. H.; Park, S. H.; Woo, S. I. Phys. Chem. Chem. Phys. 2012, 14, 6842.   DOI
12 Ganguly, A.; Anjaneyulu, O.; Ojha, K.; Ganguli, A. K. Cryst. Eng. Comm. 2015, 17, 8978.   DOI
13 Mao, Y.; Park, T. J.; Wong, S. S. Chem Commun. 2005, 46, 5721.   DOI
14 Gulden, C.; Suleyman, C. Cent. Eur. J. Phys. 2013, 11, 387.
15 Ohkoshi, S.; Tsunobuchi, Y.; Matsuda, T.; Hashimoto, K.; Namai, A.; Hakoe, F.; Tokoro, H. Nat. Chem. 2010, 2, 539.   DOI
16 Sevincli, H.; Topsakal, M.; Durgun, E.; Ciraci, S. Phys. Rev. B 2008, 77, 195434.   DOI
17 Yue, Z.; Li, L.; Zhou, J.; Zhang, H.; Gui, Z. Mater. Sci. Eng. 1999, B 4, 69.
18 Sun, L.; Zhang, R.; Wang, Z.; Ju, L.; Cao, E.; Zhang, Y. J. Magn. Magn. Mater. 2017, 421, 65.   DOI
19 Das, B. B.; Ramesh, S. AIP Conf. Proc. 2008, 1003, 85.
20 Opuchovic, O.; Kareiva, A.; Mazeika, K.; Baltrunas, D. J. Magn. Magn. Mater. 2017, 442, 425.   DOI
21 Jayswal, M. S.; Kanchan, D. K.; Sharma, P.; Gondaliya, N. Mater. Sci. Eng. B 2013, 178, 775.   DOI
22 Epifani, M.; Melissano, E.; Pace, G.; Schioppa, M. J. Eur. Ceram Soc. 2007, 27, 115.   DOI
23 Roisnel, T.; Carvajal, J.R. Mater. Sci. Forum 2001, 378, 118.   DOI
24 Patterson, A. L. Phys. Rev. 1939, 56, 978.   DOI
25 Osaka, T.; Sayama, J. Electrochim. Acta 2007, 52, 2884.   DOI
26 Das, B. B.; Rao, R. G. Phys. Status Solidi B 2015, 252, 2680.   DOI
27 Ballhausen, C. J. Introduction to Ligand Field Theory; McGraw Hill Book Company Inc.: New York, 1966; p 258.
28 Figgis, B. N. Introduction to Ligand Fields, 1st ed. Wiley Eastern Limited: New Delhi, 1976; p 21.
29 Tauc, J.; Grigorovici, R.; Vancu, A. Phys. Status Solidi B 1966, 15, 627.   DOI