• Title/Summary/Keyword: ocean cultivation

Search Result 58, Processing Time 0.029 seconds

Comparison of Biomass Production of Spirulina (Arthrospira) platensis in Outdoor Culture Conditions Using Different Media by Urea Addition (실외 배양 조건에서 요소를 첨가한 배지 성분에 따른 Spirulina (Arthrospira) platensis의 성장 비교)

  • Lee, Dae-Won;Affan, MD Abu;Lee, Hyeon-Yong;Ma, Chae Woo;Park, Heung-Sik;Kwon, Moon-Sang;Kang, Do-Hyung
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of $NaHCO_3$ (16.80 g $L^{-1}$), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and $NaNO_3$) and $NaHCO_3$. The highest maximum specific growth rate (${\mu}max$) and mass production were 0.50 $day^{-1}$ and 1.05 g $L^{-1}$ in modified medium ($NaHCO_3$ 7.50 g $L^{-1}$, urea 2.00 g $L^{-1}$ without $NaNO_3$) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and $NaHCO_3$ with soil extract was an affordable medium for natural mass cultivation in the FSM.

Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta)

  • Ko, Shin Ja;Kim, Yoo Kyung;Hong, Seong Wan;Kang, Min Su;Park, Chan Sun;Hwang, Eun Kyoung;Lee, Young Don
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • Sargassum macrocarpum is a rich source of anti-inflammatory compounds. Recently, one of the compounds, tuberatolide B, has been reported as a functional anti-inflammatory additive for foods and nutraceuticals. The artificial seeding, growth and maturation of S. macrocarpum were investigated from May 2018 to September 2019. Indoor culture experiments for induction of egg release were conducted at temperatures of 17, 20, 23, and 26℃ and irradiances of 0, 10, 20, 40, and 80 μmol photons m-2 s-1 under 14 : 10 h (L : D) photoperiod. Within a given treatment combination, higher temperatures and irradiance levels favoured the maturation of receptacles in S. macrocarpum. Using artificial temperature and irradiance control, thalli matured one month earlier than thalli in nature. Under natural condition, receptacle formation began in April, and the eggs were released in June and July. The release of eggs from the receptacles was promoted at 17-20℃ and 40-80 μmol photons m-2 s-1, and the fastest growth of germlings occuring at 15-17℃ and 40 μmol photons m-2 s-1. For mature thalli, 300 g wet-weight was sufficient to seed 100 m of seed string. Thalli grew to 10.5 ± 2.6 cm in length at a density of 6.7 ± 3.3 individuals m-1 after 1 year of cultivation, from germination. This study demonstrates that it is possible to cultivate S. macrocarpum for the production of anti-inflammatory products.

Effects of Aeration Rates on Production on Extracellular Polysaccharide, EPS-R, by Marine Bacterium Hahella chejuensis

  • Lee, Hyung-Sang;Park, Shin-Hye;Lee, Jong-Ho;Lee, Hong-Kum
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.359-362
    • /
    • 2001
  • The production of an extracellular polysaccharide, EPS-R, from the marine bacterium Hahella chejuensis was investigated at various aeration rates in a batch culture. Higher aeration rate resulted in enhanced EPS production and increased the viscosity of the culture broth. At an aeration rate of 1.5 vvm, EPS-R (12.2 g/L) was obtained with a yield (Y$\_$p/s) of 0.6 from the STN medium after 72 h of cultivation. The H. chejuensis cells changed rod morphology to a short-rod form in the stationary growth phase.

  • PDF

Microbial Symbiosis in Marine Sponges

  • Lee, Yoo-Kyung;Lee, Jung-Hyum;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.254-264
    • /
    • 2001
  • Sponges are host organisms for various symbiotic microorganisms such as archaea, bacteria, cyano-bacteria and microalgae. Sponges are also sources of a wide variety of useful natural products like cyto-toxins. antifouling agents, antibiotics, and anti-inflammatory and antiviral compounds, Symbiotic microorganisms is sponges can be sources of various natural products, because metabolites previously ascribed to sponges have recently been demonstrated to be biosynthesized by symbionts. If a symbiotic microorganisms from which some natural products are derived can be cultured, the microorganism could be used in a mass production of the bioactive comopounds. We summarize recent research on iso-lation and cultivation of sponge-symbiotic microorganisms and the symbiotic relationship.

  • PDF

Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors

  • Kim, Z-Hun;Park, Hanwool;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1098-1102
    • /
    • 2016
  • A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.

Effect of Low Temperature and GA3 Treatment on Flowering and Cut Flower Yield of Limonium spp. in Summer and Winter Cultivations (하계 및 동계재배에서 저온과 GA3 처리가 스타티스의 개화와 절화수량에 미치는 영향)

  • Chin, Young Don;An, Dong Chun;Hwang, Ju Chean;Song, Ju Yeon;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • This study was carried out to investigate effect of low temperature and $GA_3$ treatment on flowering and cut flower yield of Limonium spp. 'Ocean Blue' and 'Fantasia' in summer and winter cultivations. Plants were kept at $3^{\circ}C$ for 4 weeks, and were treated with a foliar spray of $400mg{\cdot}L^{-1}$ $GA_3$ at seven weeks after transplanting in both seasons. The effect of low temperature $3^{\circ}C$ for two weeks $GA_3$ application was tested only in winter. In summer cultivation, 'Ocean Blue' and 'Fantasia' of cut flower production by low temperature treatment were increased about 16% and 53%, respectively, while bolting and flowering advanced significantly in 'Ocean Blue' as compared to those in the control. In winter cultivation, growth and development increased, especially, in 'Fantasia'. With low temperature treatment to 'Fantasia' for 4 weeks, cut flower production was increased about 35%. In addition, bolting and flowering were hastened by about 20 and 10 days, respectively. Combined treatment of low temperature and $GA_3$ advanced bolting and flowering with little difference among the cultivars, while, in 'Fantasia' it shortened days to flowering and produced more and best quality flowers as compared to the other treatments and the control.

Anti-melanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of Jeju Island

  • Ding, Yuling;Kim, So Hui;Lee, Jeong Jun;Hong, Jin Tae;Kim, Eun-A;Kang, Do-Hyung;Heo, Soo-Jin;Lee, Seung-Hong
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2019
  • Ecklonia cava is popular in Korea as a marine functional materials. E. cava is generally collected and used on the coast of Jeju Island. However, the continuous use of collected natural E. cava may be limited because difficult to secure throughout the year and may be exposed to environmental pollution. Jeju magma seawater (MSW) was known to be significant advantages such as safety, cleanness, stability, and functional improvement. Attempts have been reported on application of MSW to the culturing of macro- and microalgae and showed improved results. Thus, the objective of the present study was to explore the anti-melanogenesis activity of brown seaweed E. cava (E. cava cultured with MSW [MSWE]) extract cultured in tanks with MSW of Jeju Island to evaluate the possibility of cosmeceutical industrial application. MSWE extract showed the higher polyphenolic and dieckol contents than natural E. cava (NE) extract. Anti-melanogenesis activity of MSWE extract and NE extract are tested and compared using tyrosinase and dihydroxyphenylalanine (DOPA) oxidation inhibition assay. MSWE extracts evidenced more effective tyrosinase and DOPA oxidation inhibition activity than that of the NE extracts and the commercial whitening agent, arbutin. MSWE extracts also markedly inhibited melanin synthesis and decreased the expression of melanogenesis-related protein in ${\alpha}$-melanocyte stimulating hormone-stimulated B16F10 melanoma cells without cytotoxicity. These results suggest that MSW cultivation process would be more effective in releasing bioactive compounds with whitening effect from seaweed such as E. cava at an industrial scale.

Cultivation of Gracilaria chorda (Gracilariales, Rhodophyta) by Vegetative Regeneration

  • Kim, Ji-Hwan;Lee, Sa-Dong;Choi, Sung-Je;Chung, Ik-Kyo;Shin, Jong-Ahm
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.141-150
    • /
    • 2005
  • To make a preliminary identification of the gracilarioid plant attached to cultivation ropes of Undaria pinnatifida and establish a method of cultivating this plant, the first taxonomic and cultivation studies on this species in Korea were conducted. This gracilarioid plant was identified from its morphological and anatomical features, as Gracilaria chorda. Growth tests using the 10, 20, and 30 cm cuttings of axes of G. chorda were performed twice, from May 3 to August 21, 2002 and from December 15, 2002 to April 3, 2003 in Ihoijin aquafarm, Hoijin, Jangheung, Jeollanamdo, Korea. In the first growing test, the thallus length of the 10, 20, and 30 cm cuttings increased twelve-fold, ten-fold, and seven-fold; the wet weight increased 81-fold, 60-fold, and 41-fold; the numbers of more than 10 cm-long branches increased 3.8-fold, 5.2-fold, and 6.1-fold, respectively. In the second growth test, the thallus length of the 10, 20, and 30 cm cuttings increased seven-fold, 5.5-fold, and four-fold; the wet weight increased 81-fold, 53-fold and 36-fold; the number of branches increased 3.8-fold, 7.3-fold, and 6.6-fold, respectively. The cultivation of G. chorda by vegetative regeneration using cuttings of thallus axes was successful for the first time in Korea.

Impacts of Large-scale Reclamation on Environment in Korea (한국의 대규모 간척사업이 주변의 환경 변화에 미치는 영향)

  • Lee, Hyoun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.463-478
    • /
    • 1997
  • This paper examines the impact of large-scale tidal flat reclamations on environment by analyzing land use change, ocean cultivation, water quality, sea biota and climate in Shiwha, Sosan and Saemankeum districts. The data used in this paper include Landsat TM images and documents related to population, industry, water quality, sea biota and climate at the time of the pre- and post-reclamation. Many times of field reclamations contribute to the creatation of newly available land for urban and industrial development, but cause environmental degradation significantly. The increase of pollution load and the change of coastal ecology, also cause some changes of climatic element such as relative humidity. As tidal flats were reduced, the area of ocean cultivation and the population of fishing industries were decreased. Conceming the sustainable development. it is necessary to carry out a careful environmental impact assessment accumulating monitoring environmental data continuously by using GIS techniques.

  • PDF