Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01031

Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors  

Kim, Z-Hun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University)
Park, Hanwool (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.6, 2016 , pp. 1098-1102 More about this Journal
Abstract
A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.
Keywords
Marine photobioreactor; microalgae; ocean cultivation; semi-permeable membrane; Tetraselmis;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Amaro HM, Macedo ÂC, Malcata FX. 2012. Microalgae: an alternative as sustainable source of biofuels? Energy 44: 158-166.   DOI
2 Bhattacharjee M, Siemann E. 2015. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae 30: 67-79.   DOI
3 Buckwalter P, Embaye T, Gormly S, Trent JD. 2013. Dewatering microalgae by forward osmosis. Desalination 312: 19-22.   DOI
4 Feng P, Deng Z, Hu Z, Fan L. 2011. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour. Technol. 102: 10577-10584.   DOI
5 Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146-1151.   DOI
6 Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, et al. 2012. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int. J. Chem. Eng. 2012: 9.   DOI
7 Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes M, Pereira TG, et al. 2009. Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquac. Int. 17: 391-399.   DOI
8 Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773.   DOI
9 Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132.   DOI
10 Kim ZH, Lee HS, Lee CG. 2009. Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis. Algae 24: 121-127.   DOI
11 Lee SH, Ahn CY, Jo BH, Lee SA, Park JY, An KG, et al. 2013. Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. J. Microbiol. Biotechnol. 23: 92-98.   DOI
12 Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, et al. 2014. Higher biomass productivity of microalgae in an attached growth system, using wast water. J. Microbiol. Biotechnol. 24: 1566-1573.   DOI
13 Wang J, Sommerfeld MR, Lu C, Hu Q. 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28: 193-202.   DOI
14 Tran HL, Kwon JS, Kim ZH, Oh Y, Lee CG. 2010. Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 15: 277-284.   DOI
15 Trent J, Wiley P, Tozzi S, McKuin B, Reinsch S. 2012. Research spotlight: The future of biofuels: is it in the bag? Biofuels 3: 521-524.   DOI
16 Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M. 2012. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5: 731-740.   DOI
17 Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. 2014. Microalgal biofuels: flexible bioenergies for sustainable development. Renew. Sust. Energ. Rev. 30: 1035-1046.   DOI
18 Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102: 159-165.   DOI
19 Zeebe RE, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes, pp. 4-11. Elsevier, Amsterdam, The Netherlands.
20 Grima EM, Fernández FGA, Camacho FG, Chisti Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol. 70: 231-247.   DOI
21 Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118.   DOI
22 Iancu P, Pleşu V, Velea S. 2012. Flue gas CO2 capture by microalgae in photobioreactor: a sustainable technology. Chem. Eng. Trans. 29: 799-804.
23 Ras M, Steyer JP, Bernard O. 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 12: 153-163.   DOI
24 Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.   DOI
25 Lee YK, Hing HK. 1989. Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl. Microbiol. Biotechnol. 31: 298-301.   DOI
26 Lin Q, Lin J. 2011. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour. Technol. 102: 1615-1621.   DOI
27 Teoh ML, Chu WL, Marchant H, Phang SM. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430.   DOI
28 Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a CO2-tolerant green microalga, Chlorella sp. MRA-1. J. Microbiol. Biotechnol. 24: 683-689.   DOI
29 Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77: 613-617.   DOI
30 Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413.   DOI