DOI QR코드

DOI QR Code

Comparison of Biomass Production of Spirulina (Arthrospira) platensis in Outdoor Culture Conditions Using Different Media by Urea Addition

실외 배양 조건에서 요소를 첨가한 배지 성분에 따른 Spirulina (Arthrospira) platensis의 성장 비교

  • Lee, Dae-Won (Pacific Ocean Research Center, KIOST) ;
  • Affan, MD Abu (Marine Biology Department, Faculty of Marine Science, King AbdulAziz University) ;
  • Lee, Hyeon-Yong (Department of Food Science and Engineering, Department of Food Science and Technology Seowon University) ;
  • Ma, Chae Woo (Department of Marine Biotechnology, College of Natural Sciences, Soon Chun Hyang University) ;
  • Park, Heung-Sik (Pacific Ocean Research Center, KIOST) ;
  • Kwon, Moon-Sang (Ocean Policy Institute, KIOST) ;
  • Kang, Do-Hyung (Global Bioresources Research Center, KIOST)
  • 이대원 (한국해양과학기술원 태평양해양연구센터) ;
  • ;
  • 이현용 (서원대학교 바이오융합학부 식품공학과) ;
  • 마채우 (순천향대학교 자연과학대학 해양생명공학과) ;
  • 박흥식 (한국해양과학기술원 태평양해양연구센터) ;
  • 권문상 (한국해양과학기술원 해양정책연구소) ;
  • 강도형 (한국해양과학기술원 해외생물자원연구센터)
  • Received : 2013.09.16
  • Accepted : 2013.11.18
  • Published : 2013.12.30

Abstract

One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of $NaHCO_3$ (16.80 g $L^{-1}$), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and $NaNO_3$) and $NaHCO_3$. The highest maximum specific growth rate (${\mu}max$) and mass production were 0.50 $day^{-1}$ and 1.05 g $L^{-1}$ in modified medium ($NaHCO_3$ 7.50 g $L^{-1}$, urea 2.00 g $L^{-1}$ without $NaNO_3$) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and $NaHCO_3$ with soil extract was an affordable medium for natural mass cultivation in the FSM.

Keywords

References

  1. Ahsan MB, Mashuda P, Tim CH, Mohammad RH (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular 1034:4-7
  2. Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2012) Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis b y the use of r efl ector l ight a nd nitrogen sources: An in-vitro study. Biomass Bioenergy 47:436-441 https://doi.org/10.1016/j.biombioe.2012.09.012
  3. Akao Y, Ebihara T, Masuda H, Saeki Y, Akazawa T, Hazeki K, Hazeki O, Matsumoto M, Seya T (2009) Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci 100: 1494-1501 https://doi.org/10.1111/j.1349-7006.2009.01188.x
  4. Alonso DL, Maroto FG (2000) Plants as 'chemical factories' for the production of polyunsaturated fatty acids. Biotechnol Adv 18:481-497 https://doi.org/10.1016/S0734-9750(00)00048-3
  5. Amha Belay (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutraceut Assoc 5(2):27-48
  6. Andersen RA (2004) Algal Culturing Techniques. ELSEVIER Academic Press, Amstredam, 596 p
  7. Avila-Leon I, Chuei Matsudo M, Sato S, JCM de Carvalho (2012) Arthrospira platensis biomass with high protein content cultuvated in continuous process using urea as nitrogen source. J Appl Microbiol 112(6):1086-1094 https://doi.org/10.1111/j.1365-2672.2012.05303.x
  8. Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J Acquir Immune Defic Syndr Hum Retrovirol 18:7-12 https://doi.org/10.1097/00042560-199805010-00002
  9. Becker EW (2008) Microalgae: Biotechnology and microbiology. Cambridge University Press, Cambridge, 293 p
  10. Celekli A, Yavuzatmaca M, (2009) Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresource Technol 100:1847-1851 https://doi.org/10.1016/j.biortech.2008.09.042
  11. Costa JAV, Cozza KL, Oliveira L, Magagnin G (2001) Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J Microbiol Biotechnol 17:439-442 https://doi.org/10.1023/A:1011925022941
  12. Cyanotech Corporation (2013) Cyanotech. http://www.cyanotech.com Accessed 6 Dec 2013
  13. Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S (2002) An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg 23:261-269 https://doi.org/10.1016/S0961-9534(02)00054-5
  14. Eroarome MA (2009) Country Pasture/Forage Resource Profiles, Federated States of Micronesia. FAO, 12 p
  15. Faintuch, BL, Sato S, Aquarone E (1992) Emprego de Algumas Fortes Nitrogenadas na Obtengcao de Biomassa de Oscillatoria limnetica. Revista de Microbologia 23:32-36
  16. Goksan T, Zekerlyaoglu A, Ak L (2007) The growth of Spirulina platensis in different culture systems under greenhouse condition. Turk J Biol 31:47-52
  17. Hayashi O, Katoh T, Okuwaki Y (1994) Enhancement of antibody production in mice by dietary Spirulina platensis. J Nutr Sci Vitaminol (Tokyo) 40:431-441 https://doi.org/10.3177/jnsv.40.431
  18. Hong S, Lee N (1993) Growth of Spirulina platensis in effluents from wastewater treatment plant of pig farm. J Microbiol Biotechn 3:19-23
  19. Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructoseinduced hyperlipidemic rats. J Nutr Sci Vitaminol (Tokyo) 36:165-171 https://doi.org/10.3177/jnsv.36.165
  20. Kay RA (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555-573 https://doi.org/10.1080/10408399109527556
  21. Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6:373-379 https://doi.org/10.2174/138920105774370607
  22. Kulshreshtha A, Zacharia AJ, Jarouliya U, Bhadauriya P, Prasad GB, Bisen PS (2008) Spirulina in health care management. Curr Pharm Biotechnol 9:400-405 https://doi.org/10.2174/138920108785915111
  23. Lun FD, Cheng WZ (2006) Culture of Spirulina platensis in human urine for biomass production and $O_2$ evolution. J Zhejiang Univ Sci B 7:34-37
  24. Mazo VK, Gmoshinskii IV, Zilova IS (2004) Microalgae Spirulina in human nutrition. Vopr Pitan 73:45-53
  25. Meeks JC, Wycoff KL, Chapman JS, Enderlin CS (1983) Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Appl Environ Microbiol 45:1351-1359
  26. Olguin EJ, Galicia S, Angulo GO, Hernandez E. (2001) The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresource Technol 77:19-24 https://doi.org/10.1016/S0960-8524(00)00142-5
  27. Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult Int 7:261-275 https://doi.org/10.1023/A:1009233230706
  28. Pirt SJ (1975) Principles of microbe and cell cultivation. John Wiley and Sons, New York, 274 p
  29. Raoof BDK, Prasanna R (2006) Formulation of a low-cost medium for mass production of Spirulina. Biomass Bioenergy 30:537-542 https://doi.org/10.1016/j.biombioe.2005.09.006
  30. Rasool M, Sabina EP (2009) Appraisal of immunomodulatory potential of Spirulina fusiformis: an in vivo and in vitro study. J Nat Med 63:169-75 https://doi.org/10.1007/s11418-008-0308-2
  31. Richmond A (2004) Handbook of Microalgal Culture. Blackwell Publishing Company, Hoboken, New Jersey, 566 p
  32. Sautier C, Tremolieres J (1998) Food value in Spirulina algae in humans. Ann Nutr Aliment 136:109-120
  33. Schwartz J, Shklar G, Reid S, Trickler D (1988) Prevention of e xperimental oral cancer b y extracts of Spirulina-Dunaliella algae. Nutr Cancer 11:127-134 https://doi.org/10.1080/01635588809513979
  34. Thompson RH, Merola GV (1993) A simplified alternative to the AOAC official method for cholesterol in multicomponent foods. J AOAC Int 15:236-244
  35. Wu LC, Ho JA, Shieh MC, Lu IW (2005) Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem 53:4207-4712 https://doi.org/10.1021/jf0479517
  36. Zarrouk C (1966) Contribution a l'etude d'une cyanophycee. Influence de divers' facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. Thesis, Universite de Paris, Paris, 83 p