• Title/Summary/Keyword: observed temperature on concrete surface

Search Result 23, Processing Time 0.028 seconds

Field Application of Foundation Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (매스콘크리트의 수화열 해석 및 현장 계측을 통한 수화발열량차 공법의 현장적용성)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.229-230
    • /
    • 2023
  • In this study, the hydration heat differential method was applied to mass concrete structures, and the hydration heat analysis was compared and analyzed with on-site measurement results. The results showed that the temperature history measurements of mass concrete were managed at a difference of 8.4 ℃, and although there was some deviation in thermal stress, a similar trend was observed. Consequently, it was determined that the thermal stress on the surface of mass concrete is less than its tensile strength, which would prevent the occurrence of thermal cracks.

  • PDF

Pre-estimate on Structural Behavior and Cracks of Subway Wall Structures Using Gage Measurement (계측에 의한 지하철 박스구조물 벽체부의 균열 밑 구조거동 예측)

  • Kim, Young-Jin;Kim, Sang-Chel
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.657-663
    • /
    • 2006
  • By measuring concrete temperature and strains of concrete and reinforcing bars throughout gages embedded and also by observing the crack occurrence, this study aims at the characteristics of structural behavior of subway wall structure in associate with concrete ages. The length of 23.5m, thickness of 2.0m of real subway custody line was selected as a representative structure and 7 thermocouples and 6 strain gages were installed to measure the behavior of wall structure. The results were compared and verified with analytical results using MIDAS in order to show their usefulness. It was found that only attachment of strain gages on the surface of reinforcing bars can figure out the timing of crack occurrence and hydration heat program is useful to estimate comparatively exact magnitudes of temperature. Since estimated time of crack occurrence throughout thermal stress analysis depends on the period of transferred thermal stress from concrete to reinforcing bars, however, cracks from naked eyes were identified later than analytical results. Cracks were observed first at the center of wall line and then to the end of line symmetrically.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Construction of Spatial Information Big Data for Urban Thermal Environment Analysis (도시 열환경 분석을 위한 공간정보 빅데이터 구축)

  • Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.

Correction Coeffecient for Tensile Adhesive Strength of the Bridge Decks Waterproofing Systems with Different Temperature Conditions (온도조건에 따른 교면방수재의 인장접착강도 보정계수에 관한 실험적 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.794-797
    • /
    • 2004
  • In this study, tensile adhesive strength(TAS) test was carreid out for evaluated the effects of temperature conditions (-20, -10, 0, 5, 10, 20, 30, $40^{\circ}C$) on the tensile adhesive characteristics about 4 type waterproofing membranes which were commercially used in bridge decks. And, failure appeariences of waterproofing systems in each temperature after TAS test were observed the sawing surfaces of waterproofing systems for whether or not damaged of waterproofing membranes. Also, correction coefficient of TAS with temperature were calculated using 4 type waterproofing membrane. It could be shown that the higher TAS and shear adhesive strength, the lower temperature, regardless of the type of waterproofing membrane. Temperature sensibility of TAS was especially remarkable in epoxy membrane. Failure type was occurred the ductile failure in $30^{\circ}C\;and\;40^{\circ}C$. From these results, it was shown that if ambient temperature above $30^{\circ}C$ maintains for a long time, waterproofing membrane will be deformed by softening. Otherwise, waterproofing membrane in temperature below $20^{\circ}C$ shown that occurred the brittle failure. From the results of visual observation of cutting surface for specimen, the thin waterproofing membranes shown indented by hot aggregate of the asphalt mixtures. Therefore, it could be known that the specification of waterproofing membrane thickness is necessary by waterproofing membrane type. As temperature change varied with pavement depth, the interface temperature was more important than ambient temperature in TAS test. Now, TAS test results were limited only in $-10^{\circ}C\;and\;20^{\circ}C$ temperature, but correction coefficient of TAS by ambient temperature could be used as a solution to deal with this problem.

  • PDF

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj;Manzoor Ahmad;Mohamed A. Khadimallah;Saima Akram;Muzamal Hussain;Madeeha Tahir;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.303-312
    • /
    • 2023
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.

Reduction Effect on Surface Temperature of Reinforced Soil Wall with Vegetated Facing (전면 식생형 보강토 옹벽의 표면온도 저감 효과)

  • Jung, Sunggyu;Lee, Kwangwu;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.53-60
    • /
    • 2013
  • A new type of reinforced earth wall(REW) system is developed with vegetated facing which provides proper environment for long-term vegetation and also applicable to high retaining wall system. Vegetated retaining wall is a green alternative for retaining walls and an effective way to reduce heat island effect than conventional block or concrete systems. Several construction sites using vegetated facing is observed to monitor adaptation state of vegetation and estimate surface temperature of wall facing over two years. It was observed that a number of plants including Siberian chrysanthemum adapt well to the inside of the facing blocks because vegetation bag helps to keep a proper condition for vegetation. According to the results using thermographic camera, average surface temperature of vegetated facing is higher for all ranges of coverage ratio of vegetation. The increment of average surface temperature of vegetated facing is larger than that of non-vegetated facing when the air temperature rises, and vice versa.

Dynamics of Hexavalent Chromium in Four Types of Aquaculture Ponds and Its Effects on the Morphology and Behavior of Cultured Clarias gariepinus (Burchell 1822)

  • Mustapha, Moshood Keke
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • Hexavalent chromium is a bio accumulative toxic metal in water and fish. It enters aquaculture ponds mainly through anthropogenic sources. Hexavalent chromium concentrations and its effects on the morphology and behavior of Clarias gariepinus were investigated from four aquaculture ponds for 12 weeks. Chromium was measured using diphenyl carbohdrazide method; alkalinity and hardness were measured using colometric method and analyzed with Bench Photometer. Temperature and pH were measured using pH/EC/TDS/Temp combined tester. Temporal and spatial replications of samples were done with triplicates morphological and behavioural effects of the metal on fish were observed visually. Chromium ranged from no detection to 0.05 mg/L, alkalinity 105 to 245 mg/L, hardness 80 to 165 mg/L, pH 6.35 to 8.03 and temperature 29.1 to $35.9^{\circ}C$. Trend in the chromium concentrations in the ponds is natural > earthen > concrete > collapsible. There was a significant difference (P < 0.05) in chromium, alkalinity, water hardness, pH and temperature among the four ponds. Significant positive correlation also existed between alkalinity, water hardness, pH, with chromium. Morphological and behavioural changes observed in the fish include irregular swimming, frequent coming to the surface, dark body colouration, mucous secretion on the body, erosion of gill epithelium, fin disintegration, abdominal distension and lethargy. High chromium concentration in natural pond was due to anthropogenic run-off of materials in to the pond. Acidic pH, low alkalinity, low water hardness also contributed to the high chromium concentration. Morphological and behavioural changes observed were attributed to the high concentrations, toxicity and bio accumulative effect of the metal. Toxicity of chromium to fish in aquaculture could threaten food security. Watershed best management practices and remediation could be adopted to reduce the effects of toxicity of chromium on pond water quality, fish flesh quality and fish welfare.