Browse > Article
http://dx.doi.org/10.12989/cac.2022.29.4.255

The impacts of thermophoresis via Cattaneo-Christov heat flux model  

Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir)
Hussain, Muzamal (Department of Mathematics, University of Malakand at Chakdara)
Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
Publication Information
Computers and Concrete / v.29, no.4, 2022 , pp. 255-262 More about this Journal
Abstract
The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.
Keywords
Newtonian fluid; power-law; stagnation point; temperature distribution; thermophoresis;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022b), "Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089211069211. https://doi.org/10.1177/09544089211069211.   DOI
2 Crane, L.J. (1970), "Flow past a stretching plate", J. Appl. Math. Phys., 21(4), 645-647. https://doi.org/10.1007/BF01587695.   DOI
3 K Hamzah, H., H Ali, F., Hatami, M. and Jing, D. (2020), "Effect of two baffles on MHD natural convection in U-Shape superposed by solid nanoparticle having different shapes", J. Appl. Comput. Mech., 6, 1200-1209. https://doi.org/10.22055/JACM.2020.33064.2141.   DOI
4 Kumari, M. and Nath, G. (1999), "Flow and heat transfer in a stagnation-point flow over a stretching sheet with a magnetic field", Mech. Res. Comm., 26(4), 469-478. https://doi.org/10.1016/S0093-6413(99)00051-8.   DOI
5 TC, C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://doi.org/10.1143/jpsj.63.2443.   DOI
6 Abid, S.R. (2020), "Temperature variation in steel beams subjected to thermal loads, Steel Compos. Struct., 34(6), 819-835. https://doi.org/10.12989/scs.2020.34.6.819.   DOI
7 Acar, B. (2019), "Laminar forced convection of various nanofluids in sudden expansion channels under constant heat flux: A CFD study", Int. J. Appl. Mech., 11(5), 1950049. https://doi.org/10.1142/S1758825119500492.   DOI
8 Ahmad, M., Ahmad, I. and Sajid, M. (2016), "Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface", Am. J. Heat Mass Transf., 3(1), 1-14. https://doi.org/10.7726/ajhmt.2016.1001.   DOI
9 Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlin. Sci. Numer. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.   DOI
10 Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.   DOI
11 Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M. and Ganji, D.D. (2021a), "Investigation of micropolar hybrid nanofluid (Iron oxide-molybdenum disulfide) flow across a sinusoidal cylinder in presence of magnetic field", Int. J. Appl. Comput. Math., 7(5), 1-17. https://doi.org/10.1007/s40819-021-01148-6.   DOI
12 Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022a), "Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections", Case Stud. Therm. Eng., 30, 101757. https://doi.org/10.1016/j.csite.2022.101757.   DOI
13 Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluid., 28(4), 043102. https://doi.org/10.1063/1.4945650.   DOI
14 Mustafaa, M., Hayat, T. and Obaidat, S. (2013), "Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions", Int. J. Numer. Method. Heat Fluid Flow, 23(6), 945-959. https://doi.org/10.1108/HFF-09-2011-0179.   DOI
15 Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the prestress-Accumulation release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.   DOI
16 Sheikholeslami, M., Shehzad, S.A. and Li, Z. (2018), "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. Heat Mass Transf., 125, 375-386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076.   DOI
17 Ahmad, M., Jalil, F., Taj, M. and Shehzad, S.A. (2020a), "Lubrication aspects in an axisymmetric magneto nanofluid flow with radiated chemical reaction", Heat Transf., 49(6), 3489-3502. https://doi.org/10.1002/htj.21784.   DOI
18 Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.   DOI
19 Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.   DOI
20 Sajid, M., Javed, T., Abbas, Z. and Ali, N. (2013), "Stagnation-point flow of a viscoelastic fluid over a lubricated surface", Int. J. Nonlin. Sci. Numer. Simul., 14(5), 285-290. https://doi.org/10.1515/ijnsns-2012-0046.   DOI
21 Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718.
22 Jing, D. and Hatami, M. (2020), "Peristaltic Carreau-Yasuda nanofluid flow and mixed heat transfer analysis in an asymmetric vertical and tapered wavy wall channel", Rep. Mech. Eng., 1(1), 128-140. https://doi.org/10.31181/rme200101128h.   DOI
23 AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.   DOI
24 Ahmad, M., Sajid, M., Hayat, T. and Ahmad, I. (2015), "On numerical and approximate solutions for stagnation point flow involving third order fluid", AIP Adv., 5(6), 067138. https://doi.org/10.1063/1.4922878.   DOI
25 Ahmad, M., Shehzad, S.A., Taj, M. and Ramesh, G.K. (2020b), "Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface", Heat Transf., 49(6), 3958-3978. https://doi.org/10.1002/htj.21817.   DOI
26 Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.   DOI
27 Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M., Waqas, M. and Ganji, D.D. (2021b), "Entropy generation of three-dimensional Bodewadt flow of water and hexanol base fluid suspended by Fe3O4 and MoS2 hybrid nanoparticles", Pramana, 95(2), 1-14. https://doi.org/10.1007/s12043-020-02075-9.   DOI
28 Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Waqas, M. and Ganji, D.D. (2020a), "Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder", Alexandria Eng. J., 59(5), 3297-3307. https://doi.org/10.1016/j.aej.2020.04.037.   DOI
29 Hosseinzadeh, K., Salehi, S., Mardani, M.R., Mahmoudi, F.Y., Waqas, M. and Ganji, D.D. (2020b), "Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation", Inf. Med. Unlock., 21, 100462. https://doi.org/10.1016/j.imu.2020.100462.   DOI
30 Hosseinzadeh, S., Hosseinzadeh, K., Rahai, M. and Ganji, D.D. (2021b), "Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method", Modern Phys. Lett. B, 35(31), 2150462. https://doi.org/10.1142/S0217984921504625.   DOI
31 Sajid, M., Arshad, A., Javed, T. and Abbas, Z. (2015), "Stagnation point flow of Walters-B fluid using hybrid homotopy analysis method", Arab. J. Sci. Eng., 40(11), 3313-3319. https://doi.org/10.1007/s13369-015-1781-z.   DOI
32 Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mechanica, 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2.   DOI
33 Straughan, B. (2008), "Stability and Wave Motion in Porous Media , Springer Science and Business Media.
34 Buongiorno, J. (2006), "Convective transport in Nanofluids", J. Heat Transf., 128, 240-250. https://doi.org/10.1115/1.2150834.   DOI
35 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.   DOI
36 White, F.M. and Majdalani, J. (2006), Viscous Fluid Flow, 3, 433-434. McGraw-Hill, NY, USA.
37 Zhang, J., Ullah, S., Gao, Y., Avcar, M. and Civalek, O . (2020), "Analysis of orthotropic plates by the two-dimensional generalized FIT method", Comput. Concrete, 26(5), 421-427. https://doi.org/10.12989/cac.2020.26.5.421.   DOI
38 AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.   DOI
39 Bhattacharyya, K., Layek, G.C. and Seth, G.S. (2014), "Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface", Physica Scripta, 89(9), 095203. https://doi.org/10.1088/0031-8949/89/9/095203.   DOI
40 Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.   DOI
41 Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.   DOI
42 Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Comm., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.   DOI
43 Dhanawansha, K.B., Senadeera, R., Gunathilake, S.S. and Dassanayake, B.S. (2020), "Silver nanowire-containing wearable thermogenic smart textiles with washing stability", Adv. Nano Res., 9(2), 123-131. https://doi.org/10.12989/anr.2020.9.2.123.   DOI
44 Ferdows, M., Khan, M.S., Alam, M.M. and Afify, A.A. (2017), "MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet", Acta Universitatis Sapientiae, Mathematica, 9(1), 140-161. https://doi.org/10.1515/ausm.2017.0009.   DOI
45 Liao, S. (2012), Homotopy Analysis Method in Nonlinear Differential Equations, Beijing: Higher education press.
46 Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.   DOI
47 Halim, N.A. and Noor, N.F.M. (2015), "Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface", AIP Conf. Proc., 1682(1), 020006. https://doi.org/10.1063/1.4932415.   DOI
48 Hayat, T., Muhammad, T., Alsaedi, A. and Alhuthali, M.S. (2015), "Magneto hydrodynamics three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation", J. Magnetism Magnetic Mater., 385, 222-229. https://doi.org/10.1016/j.jmmm.2015.02.046.   DOI
49 Mijajlovic, M.M., Vidojkovic, S., Ciric, D. and Marinkovic, D. (2020), "Numerical simulation of fluid-structure interaction between fishing wobbler and water", Facta Unversitatis, 18(4), 665-676. https://doi.org/10.22190/FUME200128015M.   DOI
50 Hiemenz, K. (1911), "Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder", Dinglers Polytech. J., 326, 321-324. https://lib.ugent.be/catalog/rug01:001856944.
51 Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.   DOI
52 Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x.   DOI
53 Daba, M. and Devaraj, P. (2016), "Unsteady boundary layer flow of a Nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation", Therm. Phys. Aeromech., 23(3), 403-413. https://doi.org/10.1134/S0869864316030100.   DOI
54 Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.   DOI
55 Durgaprasad, P., Varma, S.V.K., Hoque, M.M. and Raju, C.S.K. (2019), "Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles", Neural Comput. Appl., 31(10), 6275-6286. https://doi.org/10.1007/s00521-018-3451-z.   DOI
56 Fallah Najafabadi, M., Talebi Rostami, H., Hosseinzadeh, K. and Domiri Ganji, D. (2021), "Thermal analysis of a moving fin using the radial basis function approximation", Heat Transf., 50(8), 7553-7567. https://doi.org/10.1002/htj.22242.   DOI
57 Makinde, O.D. and Aziz, A. (2011), "Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition", Int. J. Therm. Sci., 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019.   DOI
58 Mahapatra, T.R. and Gupta, A.S. (2001), "Magneto hydrodynamics stagnation-point flow towards a stretching sheet", Acta Mech., 152(1-4), 191-196. https://doi.org/10.1007/BF01176953.   DOI
59 Mahmood, K., Sajid, M., Ali, N. and Javed, T. (2017), "MHD mixed convection stagnation point flow of a viscous fluid over a lubricated vertical surface", Indust. Lubrication Tribology, 69(4), 527-535. https://doi.org/10.1108/ILT-02-2016-0025.   DOI
60 Mogharrebi, A.R., Ganji, A.R.D., Hosseinzadeh, K., Roghani, S., Asadi, A. and Fazlollahtabar, A. (2021), "Investigation of magnetohydrodynamic nanofluid flow contain motile oxytactic microorganisms over rotating cone", Int. J. Numer. Method. Heat Fluid Flow., 31(11), 3394-3412. https://doi.org/10.1108/HFF-08-2020-0493.   DOI
61 Na, T.Y. (Ed.) (1980), "Computational methods in engineering boundary value problems", Academic Press.
62 Sajid, M., Ahmad, M., Ahmad, I., Taj, M. and Abbasi, A. (2015), "Axisymmetric stagnation-point flow of a third-grade fluid over a lubricated surface", Adv. Mech. Eng., 7(8), 1-8. https://doi.org/10.1177/1687814015591735.   DOI
63 Rashidi, M.M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. (2014), "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects", Ain Shams Eng. J., 5(3), 901-912. https://doi.org/10.1016/j.asej.2014.02.007.   DOI
64 TalebiRostami, H., Fallah, M., Hosseinzadeh, K. and Ganji, D.D. (2021), "Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field Using RBF method", Int. J. Ambient Ener., 1-32. https://doi.org/10.1080/01430750.2021.2023041,   DOI
65 Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.1080/00986445.2011.631202.   DOI
66 Sajid, M., Mahmood, K. and Abbas, Z. (2012), "Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface", Chinese Phys. Lett., 29(2), 024702. https://doi.org/10.1088/0256-307X/29/2/024702.   DOI
67 Sheikholeslami, M. (2018), "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. Mole. Liquid., 249, 921-929. https://doi.org/10.1016/j.molliq.2017.11.118.   DOI
68 Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.   DOI
69 Gupta, Y., Rana, P., Beg, O.A. and Kadir, A. (2020), "Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis", J. Appl. Comput. Mech., 6(4), 956-967. http://doi.org/10.22055/JACM.2019.30144.1689.   DOI
70 Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of Tio2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powd. Tech., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.   DOI