DOI QR코드

DOI QR Code

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, University of Malakand at Chakdara) ;
  • Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
  • Received : 2021.08.11
  • Accepted : 2022.04.12
  • Published : 2022.04.25

Abstract

The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/155/43.

References

  1. Abid, S.R. (2020), "Temperature variation in steel beams subjected to thermal loads, Steel Compos. Struct., 34(6), 819-835. https://doi.org/10.12989/scs.2020.34.6.819.
  2. Acar, B. (2019), "Laminar forced convection of various nanofluids in sudden expansion channels under constant heat flux: A CFD study", Int. J. Appl. Mech., 11(5), 1950049. https://doi.org/10.1142/S1758825119500492.
  3. Ahmad, M., Ahmad, I. and Sajid, M. (2016), "Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface", Am. J. Heat Mass Transf., 3(1), 1-14. https://doi.org/10.7726/ajhmt.2016.1001.
  4. Ahmad, M., Jalil, F., Taj, M. and Shehzad, S.A. (2020a), "Lubrication aspects in an axisymmetric magneto nanofluid flow with radiated chemical reaction", Heat Transf., 49(6), 3489-3502. https://doi.org/10.1002/htj.21784.
  5. Ahmad, M., Sajid, M., Hayat, T. and Ahmad, I. (2015), "On numerical and approximate solutions for stagnation point flow involving third order fluid", AIP Adv., 5(6), 067138. https://doi.org/10.1063/1.4922878.
  6. Ahmad, M., Shehzad, S.A., Taj, M. and Ramesh, G.K. (2020b), "Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface", Heat Transf., 49(6), 3958-3978. https://doi.org/10.1002/htj.21817.
  7. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  8. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
  9. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.
  10. Bhattacharyya, K., Layek, G.C. and Seth, G.S. (2014), "Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface", Physica Scripta, 89(9), 095203. https://doi.org/10.1088/0031-8949/89/9/095203.
  11. Buongiorno, J. (2006), "Convective transport in Nanofluids", J. Heat Transf., 128, 240-250. https://doi.org/10.1115/1.2150834.
  12. Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.
  13. Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Comm., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.
  14. Crane, L.J. (1970), "Flow past a stretching plate", J. Appl. Math. Phys., 21(4), 645-647. https://doi.org/10.1007/BF01587695.
  15. Daba, M. and Devaraj, P. (2016), "Unsteady boundary layer flow of a Nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation", Therm. Phys. Aeromech., 23(3), 403-413. https://doi.org/10.1134/S0869864316030100.
  16. Dhanawansha, K.B., Senadeera, R., Gunathilake, S.S. and Dassanayake, B.S. (2020), "Silver nanowire-containing wearable thermogenic smart textiles with washing stability", Adv. Nano Res., 9(2), 123-131. https://doi.org/10.12989/anr.2020.9.2.123.
  17. Durgaprasad, P., Varma, S.V.K., Hoque, M.M. and Raju, C.S.K. (2019), "Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles", Neural Comput. Appl., 31(10), 6275-6286. https://doi.org/10.1007/s00521-018-3451-z.
  18. Fallah Najafabadi, M., Talebi Rostami, H., Hosseinzadeh, K. and Domiri Ganji, D. (2021), "Thermal analysis of a moving fin using the radial basis function approximation", Heat Transf., 50(8), 7553-7567. https://doi.org/10.1002/htj.22242.
  19. Ferdows, M., Khan, M.S., Alam, M.M. and Afify, A.A. (2017), "MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet", Acta Universitatis Sapientiae, Mathematica, 9(1), 140-161. https://doi.org/10.1515/ausm.2017.0009.
  20. Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.
  21. Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of Tio2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powd. Tech., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.
  22. Gupta, Y., Rana, P., Beg, O.A. and Kadir, A. (2020), "Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis", J. Appl. Comput. Mech., 6(4), 956-967. http://doi.org/10.22055/JACM.2019.30144.1689.
  23. Halim, N.A. and Noor, N.F.M. (2015), "Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface", AIP Conf. Proc., 1682(1), 020006. https://doi.org/10.1063/1.4932415.
  24. Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.
  25. Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlin. Sci. Numer. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.
  26. Hayat, T., Muhammad, T., Alsaedi, A. and Alhuthali, M.S. (2015), "Magneto hydrodynamics three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation", J. Magnetism Magnetic Mater., 385, 222-229. https://doi.org/10.1016/j.jmmm.2015.02.046.
  27. Hiemenz, K. (1911), "Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder", Dinglers Polytech. J., 326, 321-324. https://lib.ugent.be/catalog/rug01:001856944.
  28. Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M. and Ganji, D.D. (2021a), "Investigation of micropolar hybrid nanofluid (Iron oxide-molybdenum disulfide) flow across a sinusoidal cylinder in presence of magnetic field", Int. J. Appl. Comput. Math., 7(5), 1-17. https://doi.org/10.1007/s40819-021-01148-6.
  29. Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M., Waqas, M. and Ganji, D.D. (2021b), "Entropy generation of three-dimensional Bodewadt flow of water and hexanol base fluid suspended by Fe3O4 and MoS2 hybrid nanoparticles", Pramana, 95(2), 1-14. https://doi.org/10.1007/s12043-020-02075-9.
  30. Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Waqas, M. and Ganji, D.D. (2020a), "Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder", Alexandria Eng. J., 59(5), 3297-3307. https://doi.org/10.1016/j.aej.2020.04.037.
  31. Hosseinzadeh, K., Salehi, S., Mardani, M.R., Mahmoudi, F.Y., Waqas, M. and Ganji, D.D. (2020b), "Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation", Inf. Med. Unlock., 21, 100462. https://doi.org/10.1016/j.imu.2020.100462.
  32. Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022a), "Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections", Case Stud. Therm. Eng., 30, 101757. https://doi.org/10.1016/j.csite.2022.101757.
  33. Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022b), "Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089211069211. https://doi.org/10.1177/09544089211069211.
  34. Hosseinzadeh, S., Hosseinzadeh, K., Rahai, M. and Ganji, D.D. (2021b), "Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method", Modern Phys. Lett. B, 35(31), 2150462. https://doi.org/10.1142/S0217984921504625.
  35. Jing, D. and Hatami, M. (2020), "Peristaltic Carreau-Yasuda nanofluid flow and mixed heat transfer analysis in an asymmetric vertical and tapered wavy wall channel", Rep. Mech. Eng., 1(1), 128-140. https://doi.org/10.31181/rme200101128h.
  36. K Hamzah, H., H Ali, F., Hatami, M. and Jing, D. (2020), "Effect of two baffles on MHD natural convection in U-Shape superposed by solid nanoparticle having different shapes", J. Appl. Comput. Mech., 6, 1200-1209. https://doi.org/10.22055/JACM.2020.33064.2141.
  37. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
  38. Kumari, M. and Nath, G. (1999), "Flow and heat transfer in a stagnation-point flow over a stretching sheet with a magnetic field", Mech. Res. Comm., 26(4), 469-478. https://doi.org/10.1016/S0093-6413(99)00051-8.
  39. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.
  40. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
  41. Liao, S. (2012), Homotopy Analysis Method in Nonlinear Differential Equations, Beijing: Higher education press.
  42. Mahapatra, T.R. and Gupta, A.S. (2001), "Magneto hydrodynamics stagnation-point flow towards a stretching sheet", Acta Mech., 152(1-4), 191-196. https://doi.org/10.1007/BF01176953.
  43. Mahmood, K., Sajid, M., Ali, N. and Javed, T. (2017), "MHD mixed convection stagnation point flow of a viscous fluid over a lubricated vertical surface", Indust. Lubrication Tribology, 69(4), 527-535. https://doi.org/10.1108/ILT-02-2016-0025.
  44. Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x.
  45. Makinde, O.D. and Aziz, A. (2011), "Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition", Int. J. Therm. Sci., 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019.
  46. Mijajlovic, M.M., Vidojkovic, S., Ciric, D. and Marinkovic, D. (2020), "Numerical simulation of fluid-structure interaction between fishing wobbler and water", Facta Unversitatis, 18(4), 665-676. https://doi.org/10.22190/FUME200128015M.
  47. Mogharrebi, A.R., Ganji, A.R.D., Hosseinzadeh, K., Roghani, S., Asadi, A. and Fazlollahtabar, A. (2021), "Investigation of magnetohydrodynamic nanofluid flow contain motile oxytactic microorganisms over rotating cone", Int. J. Numer. Method. Heat Fluid Flow., 31(11), 3394-3412. https://doi.org/10.1108/HFF-08-2020-0493.
  48. Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.1080/00986445.2011.631202.
  49. Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluid., 28(4), 043102. https://doi.org/10.1063/1.4945650.
  50. Mustafaa, M., Hayat, T. and Obaidat, S. (2013), "Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions", Int. J. Numer. Method. Heat Fluid Flow, 23(6), 945-959. https://doi.org/10.1108/HFF-09-2011-0179.
  51. Na, T.Y. (Ed.) (1980), "Computational methods in engineering boundary value problems", Academic Press.
  52. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the prestress-Accumulation release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.
  53. Rashidi, M.M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. (2014), "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects", Ain Shams Eng. J., 5(3), 901-912. https://doi.org/10.1016/j.asej.2014.02.007.
  54. Sajid, M., Ahmad, M., Ahmad, I., Taj, M. and Abbasi, A. (2015), "Axisymmetric stagnation-point flow of a third-grade fluid over a lubricated surface", Adv. Mech. Eng., 7(8), 1-8. https://doi.org/10.1177/1687814015591735.
  55. Sajid, M., Arshad, A., Javed, T. and Abbas, Z. (2015), "Stagnation point flow of Walters-B fluid using hybrid homotopy analysis method", Arab. J. Sci. Eng., 40(11), 3313-3319. https://doi.org/10.1007/s13369-015-1781-z.
  56. Sajid, M., Javed, T., Abbas, Z. and Ali, N. (2013), "Stagnation-point flow of a viscoelastic fluid over a lubricated surface", Int. J. Nonlin. Sci. Numer. Simul., 14(5), 285-290. https://doi.org/10.1515/ijnsns-2012-0046.
  57. Sajid, M., Mahmood, K. and Abbas, Z. (2012), "Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface", Chinese Phys. Lett., 29(2), 024702. https://doi.org/10.1088/0256-307X/29/2/024702.
  58. Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mechanica, 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2.
  59. Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718.
  60. Sheikholeslami, M. (2018), "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. Mole. Liquid., 249, 921-929. https://doi.org/10.1016/j.molliq.2017.11.118.
  61. Sheikholeslami, M., Shehzad, S.A. and Li, Z. (2018), "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. Heat Mass Transf., 125, 375-386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076.
  62. Straughan, B. (2008), "Stability and Wave Motion in Porous Media , Springer Science and Business Media.
  63. Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.
  64. TalebiRostami, H., Fallah, M., Hosseinzadeh, K. and Ganji, D.D. (2021), "Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field Using RBF method", Int. J. Ambient Ener., 1-32. https://doi.org/10.1080/01430750.2021.2023041,
  65. TC, C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://doi.org/10.1143/jpsj.63.2443.
  66. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
  67. White, F.M. and Majdalani, J. (2006), Viscous Fluid Flow, 3, 433-434. McGraw-Hill, NY, USA.
  68. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
  69. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.
  70. Zhang, J., Ullah, S., Gao, Y., Avcar, M. and Civalek, O . (2020), "Analysis of orthotropic plates by the two-dimensional generalized FIT method", Comput. Concrete, 26(5), 421-427. https://doi.org/10.12989/cac.2020.26.5.421.