• Title/Summary/Keyword: object detection and classification

Search Result 296, Processing Time 0.035 seconds

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Dual Attention Based Image Pyramid Network for Object Detection

  • Dong, Xiang;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4439-4455
    • /
    • 2021
  • Compared with two-stage object detection algorithms, one-stage algorithms provide a better trade-off between real-time performance and accuracy. However, these methods treat the intermediate features equally, which lacks the flexibility to emphasize meaningful information for classification and location. Besides, they ignore the interaction of contextual information from different scales, which is important for medium and small objects detection. To tackle these problems, we propose an image pyramid network based on dual attention mechanism (DAIPNet), which builds an image pyramid to enrich the spatial information while emphasizing multi-scale informative features based on dual attention mechanisms for one-stage object detection. Our framework utilizes a pre-trained backbone as standard detection network, where the designed image pyramid network (IPN) is used as auxiliary network to provide complementary information. Here, the dual attention mechanism is composed of the adaptive feature fusion module (AFFM) and the progressive attention fusion module (PAFM). AFFM is designed to automatically pay attention to the feature maps with different importance from the backbone and auxiliary network, while PAFM is utilized to adaptively learn the channel attentive information in the context transfer process. Furthermore, in the IPN, we build an image pyramid to extract scale-wise features from downsampled images of different scales, where the features are further fused at different states to enrich scale-wise information and learn more comprehensive feature representations. Experimental results are shown on MS COCO dataset. Our proposed detector with a 300 × 300 input achieves superior performance of 32.6% mAP on the MS COCO test-dev compared with state-of-the-art methods.

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

BATC SURVEY: AUTOMATED PHOTOMETRY AND STRATEGY FOR OBJECT CLASSIFICATION, REDSHIFT, AND VARIABILITY

  • BYUN YONG-IK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.125-126
    • /
    • 1996
  • Beijing-Arizona-Taipei-Connecticut (BATC) survey is a long term project to map the spectral energy distribution of various objects using 15 intermediate band filters and aims to cover about 450 sq degrees of northern sky. The SED information, combined with image structure information, is used to classify objects into several stellar and galaxy categories as well as QSO candidates. In this paper, we present a preliminary setup of robust data reduction procedure recently developed at NCU and also briefly discuss general classification scheme: redshift estimate, and automatic detection of variable objects.

  • PDF

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF

Application of Deep Learning-Based Object Detection Models to Classify Images of Cacatua Parrot Species

  • Jung-Il Kim;Jong-Won Baek;Chang-Bae Kim
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.4
    • /
    • pp.266-275
    • /
    • 2024
  • Parrots, especially the Cacatua species, are a particular focus for trade because of their mimicry, plumage, and intelligence. Indeed, Cacatua species are imported most into Korea. To manage trade in wildlife, it is essential to identify the traded species. This is conventionally achieved by morphological identification by experts, but the increasing volume of trade is overwhelming them. Identification of parrots, particularly Cacatua species, is difficult due to their similar features, leading to frequent misidentification. There is thus a need for tools to assist experts in accurately identifying Cacatua species in situ. Deep learning-based object detection models, such as the You Only Look Once (YOLO) series, have been successfully employed to classify wildlife and can help experts by reducing their workloads. Among these models, YOLO versions 5 and 8 have been widely applied for wildlife classification. The later model normally performs better, but selecting and designing a suitable model remains crucial for custom datasets, such as wildlife. Here, YOLO versions 5 and 8 were employed to classify 13 Cacatua species in the image data. Images of these species were collected from eBird, iNaturalist, and Google. The dataset was divided, with 80% used for training and validation and 20% for evaluating model performance. Model performance was measured by mean average precision, with YOLOv5 achieving 0.889 and YOLOv8 achieving 0.919. YOLOv8 was thus better than YOLOv5 at detecting and classifying Cacatua species in the examined images. The model developed here could significantly support the management of the global trade in Cacatua species.

An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera (다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현)

  • Lee, Byung-Eun;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.17-22
    • /
    • 2009
  • DaVinci processors are popular media processors for implementing embedded multimedia applications. They support dual core architecture: ARM9 core for video I/O handling as well as system management and peripheral handling, and DSP C64+ core for effective digital signal processing. In this paper, we propose our efforts for optimal implementation of object tracking algorithm in DaVinci-based smart camera which is being designed and implemented by our laboratory. The smart camera in this paper is supposed to support object detection, object tracking, object classification and detection of intrusion into surveillance regions and sending the detection event to remote clients using IP protocol. Object tracking algorithm is computationally expensive since it needs to process several procedures such as foreground mask extraction, foreground mask correction, connected component labeling, blob region calculation, object prediction, and etc. which require large amount of computation times. Thus, if it is not implemented optimally in Davinci-based processors, one cannot expect real-time performance of the smart camera.

  • PDF

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.