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INTRODUCTION

Although trade in wildlife is known to directly or indirectly 
influence the decline in biodiversity, such trade continues to 
increase worldwide (Scheffers et al., 2019; Hughes, 2021). 
Various international conventions and conservation bodies, 
such as the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES), protect wildlife 
from extinction by managing its global trade. Among avian 
orders, parrots (Psittaciformes) are the most traded wildlife 
group worldwide, as live companion pets (Bush et al., 2014; 
Furnell, 2019; Scheffers et al., 2019). Its features, including 
mimicking different sounds such as the human voice (Brad-
bury and Balsby, 2016), colorful and complex plumage (Berg 
and Bennett, 2010), and high intelligence (Cussen, 2017), 
make parrots particularly sought after as pets, which has in 

turn increased the trade in the animals (Aloysius et al., 2020; 
Chan et al., 2021). Among the parrots, the genus Cacatua, 
which consists of 13 species, was one of the most traded 
parrot genera globally between 1975 and 2016 (Chan et al., 
2021). Indeed, according to the National Institute of Biologi-
cal Resources (NIBR), parrots are the animal most commonly 
imported into Korea (Seomun and Kim, 2016). From 2009 to 
2014, 50 parrot species were imported into Korea, with Caca-
tua species being the largest group, numbering eight imported 
species (Seomun and Kim, 2016). Among these eight spe-
cies, two, C. moluccensis and C. tenuirostris, were included  
in CITES Appendix I, indicating the prohibition of their trade, 
while the other six were included in CITES Appendix II,  
indicating close monitoring of their trade through permits. In 
Asia, such as in the Philippines and Hong Kong, the illegal 
trade in Cacatua species is known to be ongoing (Andersson 
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ABSTRACT

Parrots, especially the Cacatua species, are a particular focus for trade because of their mimicry, plumage, and 
intelligence. Indeed, Cacatua species are imported most into Korea. To manage trade in wildlife, it is essential to 
identify the traded species. This is conventionally achieved by morphological identification by experts, but the 
increasing volume of trade is overwhelming them. Identification of parrots, particularly Cacatua species, is difficult 
due to their similar features, leading to frequent misidentification. There is thus a need for tools to assist experts in 
accurately identifying Cacatua species in situ. Deep learning-based object detection models, such as the You Only 
Look Once (YOLO) series, have been successfully employed to classify wildlife and can help experts by reducing 
their workloads. Among these models, YOLO versions 5 and 8 have been widely applied for wildlife classification. 
The later model normally performs better, but selecting and designing a suitable model remains crucial for custom 
datasets, such as wildlife. Here, YOLO versions 5 and 8 were employed to classify 13 Cacatua species in the image 
data. Images of these species were collected from eBird, iNaturalist, and Google. The dataset was divided, with 80% 
used for training and validation and 20% for evaluating model performance. Model performance was measured by 
mean average precision, with YOLOv5 achieving 0.889 and YOLOv8 achieving 0.919. YOLOv8 was thus better 
than YOLOv5 at detecting and classifying Cacatua species in the examined images. The model developed here 
could significantly support the management of the global trade in Cacatua species.
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et al., 2021; Brandis et al., 2023).
Identification of traded species is the crucial first step to 

managing wildlife trade and combating illegal activities 

(Scheffers et al., 2019). Although the identification of traded 
wildlife has been pursued by using various methods, the con-
ventional approach usually based on morphological identifi-
cation by experts remains main procedure (Mahendiran et al., 
2018; Trail, 2021). However, continuous rise in the volume 
of trade in wildlife has overwhelmed experts (Esipova et al., 
2021; Hughes, 2021). In particular, identification of parrots 
including Cacatua species can be extremely challenging and 
these are often incorrectly identified when traded (Parr and 
Juniper, 2010). Cacatua species are mostly characterized by 
white bodies, mainly white or yellow crest, and white or little 
yellow ear-coverts (Forshaw, 2010; Parr and Juniper, 2010; 
Del Hoyo, 2020). The identification of Cacatua species in 
situ is challenging due to their similar morphological features  
between examined species (Parr and Juniper, 2010). Thus, 
tools in classifying globally traded wildlife, especially parrots, 
are needed to support experts for accurate and rapid wildlife 
identification.

Various studies have shown that deep learning-based image  
classification methods are valuable tools for supporting the 
identification of wildlife by morphology-based approach  

(Kim et al., 2022; Baek et al., 2023; Cardoso et al., 2023; 
Kulkarni and Di Minin, 2023). In addition, the vast number of 
images collected in recent citizen science programs has made 
deep learning a more powerful tool for wildlife conservation  

(McClure et al., 2020; Chowdhury et al., 2023). Citizen scien-
tists can upload images to biodiversity-associated platforms, 
such as eBird (https://ebird.org) and iNaturalist (https://www.
inaturalist.org), by using their mobile devices. These databases  
have the advantage of bringing together images of various  
individuals from particular species in a broad range of habitats 

(McClure et al., 2020). Training deep learning models with 
these image data can be a valuable way of enhancing model 
performance (Jang and Lee, 2021). Deep learning using the 
vast amount of data obtained from citizen science programs 
could help alleviate the burden placed on experts, allowing 
them to concentrate on more complex identification of traded 
wildlife (Spiesman et al., 2021). 

Among deep learning-based image classification models, 
object detection models were developed based on convolu-
tional neural networks, which are basic and standard in the 
field of image classification. These models can detect and 
classify objects in images based on the features extracted from 
the given dataset. In this process, the ‘objects’ refers to the  
target species in images, ‘detecting objects’ means recognizing  
the presence of objects and determining the location of these 
within the images, while ‘classifying objects’ means the model  
assigning the detected objects to the most morphologically 

similar species in the dataset. This ability has led to the wide-
spread and successful utilization of object detection models 
for classifying wildlife (Kim et al., 2022; Baek et al., 2023; 
Cardoso et al., 2023; Roy et al., 2023). The You Only Look 
Once (YOLO) series models currently dominate among object  
detection models. Among these models, YOLO version 5 

(YOLOv5) has been found to outperform most object detec-
tion models, in terms of both accuracy and speed (Jocher et 
al., 2022), and has been widely applied for the classification of 
various organisms (Ahmad et al., 2022; Tannous et al., 2023; 
Vo et al., 2023). Meanwhile, YOLO version 8 (YOLOv8) was 
also recently developed (Jocher et al., 2023) and revealed to 
be a state-of-the-art object detection algorithm (Wang et al., 
2023). For standard datasets, such as the COCO dataset con-
sisting of various objects, the more recent model commonly 
outperforms the previous one (Jocher et al., 2023). However, 
for custom datasets, especially for wildlife, this is not always 
the case (Dang et al., 2023; Sheng et al., 2023). There is thus a 
need to choose the best model for a particular custom dataset, 
or to design a novel model suitable for current data.

Here, we developed deep learning-based models for classi- 
fying Cacatua species using images collected from eBird, 
iNaturalist, and Google. The YOLOv5 and YOLOv8 models, 
both widely used and relatively advanced, were employed for 
classifying 13 Cacatua species. Model performance was eval-
uated using the metrics of precision, recall, and mean Average 
Precision (mAP). The classification results are also presented  
through a confusion matrix. The outcomes of this study 
should aid the classification of such species for conservation 
purposes.

MATERIALS AND METHODS

Fig. 1 presents a flowchart of the entire methodology of this 
study. Images of 13 Cacatua species were collected, and 
the species in the images were labeled. The labeled images 
were split into the training, validation, and test sets. Models 
were trained using the training set and validation set. During 
the training process, object detection and classification were 
learned simultaneously. Finally, the performances of the 
models were evaluated using the test set.

Data collection
Images of 13 Cacatua species were collected from both the 
eBird (https://ebird.org) and the iNaturalist (https://www.inatu 
ralist.org). To minimize imbalance in the data, additional  
images of species for which fewer than 50 images were retrie- 
ved from these two databases were collected from Google 

(https://www.google.com). The number of images from each 
database is detailed in Appendix 1. In the eBird database, 

https://ebird.org
https://www.inaturalist.org
https://www.inaturalist.org
https://ebird.org
https://www.inaturalist.org
https://www.inaturalist.org
https://www.google.com
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images were collected by the image downloader provided by 
Google. Meanwhile, images of research grade were collected 
from the iNaturalist using Inat_images (Huerta-Ramos and 
Luštrik, 2021). Moreover, to obtain images from Google, 
searches were performed using scientific and common names 
as keywords, and then images of the species were collected  
using AutoCrawler (Kim, 2004). Cacatua species in the images  
were identified carefully using morphological features specific  

to each species, with reference to the taxonomic literatures 

(Forshaw, 2010; Parr and Juniper, 2010; Del Hoyo, 2020). 
Images for which accurate identification of the species could  
not be achieved based on morphological features were re-
moved. Image data collection and selection following the pro- 
cess conducted in this study has been successfully applied to 
construct the dataset for training and evaluating deep learn-
ing models (Kim et al., 2022; Baek et al., 2023). Images with 

Fig. 1. The flowchart of the overall methodology for classifying 13 Cacatua species. TP, true-positive; FP, false-positive; FN, 
false-negative; AP, Average Precision; mAP, mean Average Precision.

Table 1. The dataset containing 13 Cacatua species examined in this study

No. Species Total Training  set Validation  set Test set

1 Cacatua alba 114 72 18 24
2 Cacatua citrinocristata 107 68 17 22
3 Cacatua ducorpsii 95 60 15 20
4 Cacatua galerita 5,912 3,783 945 1,184
5 Cacatua goffiniana 323 206 51 66
6 Cacatua haematuropygia 84 53 13 18
7 Cacatua leadbeateri 795 508 127 160
8 Cacatua moluccensis 72 46 11 15
9 Cacatua ophthalmica 89 56 14 19

10 Cacatua pastinator 254 162 40 52
11 Cacatua sanguinea 1,643 1,051 262 330
12 Cacatua sulphurea 64 40 10 14
13 Cacatua tenuirostris 3,896 2,493 623 780
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more than 320 ×320 pixels and a resolution of 72 dpi were 
used in this study. The whole body of the Cacatua species 
was set as objects in the images because the morphological 
features that can be applied to distinguish between Cacatua 
species (i.e., crest, eye ring, plumage, and base of the tail) are 
located throughout the body. The ground truth bounding box 
was labeled using LabelImg (Tzutalin, 2015). The dataset was 
split randomly into a training set of 8,598 images (64%), a 
validation set of 2,146 images (16%), and a test set of 2,704 
images (20%) (Table 1).

Model training
In this study, the YOLOv5 model (Jocher et al., 2022) and the 
YOLOv8 model (Jocher et al., 2023) were employed to clas-
sify 13 Cacatua species. These models are divided into five 
network structures: n, s, m, l, and x. Among these structures, 
this study used YOLOv5x and YOLOv8x, which showed the 
highest classification performance (Jocher et al., 2023). The 
examined models were trained with 300 maximum epochs at 
a batch size of 16 and an input image size of 640×640. The 
epoch represents the training period, and the batch size repre- 
sents the number of training images in each iteration that con-
stitute one epoch. Early stopping functions and data augmen-
tation were performed to prevent overfitting. The model train-
ing stopped early at the epoch when mAP did not increase for 
10 epochs after setting patience to 10. Two data augmentation 
methods, namely, Albumentation (Buslaev et al., 2020) and 
Mosaic Augmentation (Austrheim et al., 2014), were applied 
in the training process. The Albumentation method included  
horizontal flip, translation, zoom-in, and augmentation of 
HSV (Hue, Saturation, and Value) (Buslaev et al., 2020). The 
experimental platform of these models is based on the Rocky 
Linux 8 operating system, which uses two Intel Xeon Gold 
6326 CPUs, eight 64 GB REG.ECC DDR4 SDRAMs, and 
Nvidia RTX A5000 Graphics with 24G memory. The expe- 
rimental program is based on Python 3.11.3, CUDA 12.2, 
cuDNN 8.9.3, and Pytorch 2.0.1. All experimental programs 
were executed in a virtual environment using the Anaconda 
prompt. The required packages for the experimental program 
were imported from PyPI, SciPy, and Pytorch to ensure the 
proper functioning and execution of the experiments.

Evaluation of model performance
To evaluate the performance of models, the following metrics 
were used: precision, recall, and mAP. These were evaluated 
after the completion of training using the test set. Precision 
refers to the proportion of true results among predicted results 
by the model, while recall means the proportion of results 
correctly predicted by the model among the total true results. 
mAP is an index reflecting both precision and recall. The pre-
cision and recall were calculated using formulas (1) and (2), 

respectively. The true-positive (TP) and false-positive (FP) 
were defined by using Intersection over Union (IoU). Model  
predictions were considered TP or FP when the IoU value was 
greater or less than the threshold, respectively. TP was situa-
tion in which the prediction of detecting objects and classifi-
cation by the model examined was the same as that of the true 
label. In contrast, FP occurred when object detection and/or 
classification predictions of the model differed from the true 
label. False-negative (FN) results implied that the model did 
not predict any result despite the presentation of a true label. 
In this study, the IoU threshold value was determined to be 
0.5, the standard value to evaluate the performance of object 
detection models (Jocher et al., 2022, 2023). The Average 
Precision (AP) value was calculated using formula (3), with n 
representing the number of ground truth objects. It balances 
both precision and recall and is based on calculation of the 
area under a precision-recall curve to optimize detection and 
classification models. mAP was calculated using formula (4), 
with Q representing the number of queries of the dataset and 
AP (q) representing the AP of a given query q. The inference 
time was calculated as the average time required to process 
each image. Finally, the classification results of the models 
were presented through a confusion matrix.

  True positive
Precision = -------------------------------------------� (1)
 True positive + False positive

 True positive
Recall = --------------------------------------------� (2)
 True positive + False negative

Average Precision (AP)

=        {Recall (x)-Recall (x + 1)} × Precision (x)  (3)   

 Ap (q)
mean Average Precision (mAP) = ------------------� (4)
 Q

RESULTS

This study compared the performance of YOLOv5 and 
YOLOv8 models in detecting and classifying 13 Cacatua spe-
cies in 13,448 examined images. Table 2 shows the precision, 
recall, and mAP values of YOLOv5 and YOLOv8 models 
used in the study. The AP values were 0.878 for YOLOv5 and 
0.919 for YOLOv8. For the YOLOv5 model, the precision 
values for 13 Cacatua species ranged from 0.688 for C. sul-
phurea to 0.975 for C. galerita. Similarly, for YOLOv8, the 
lowest precision value was 0.743 for C. sulphurea, while the 
highest was 0.987 for C. galerita. The precision differed most 
markedly between the models for C. alba: 0.700 for YOLOv5 
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and 0.886 for YOLOv8. The average recall values were 0.828 
for YOLOv5 and 0.841 for YOLOv8. In the two models, the 
recall value of C. sulphurea was the lowest with value of 0.390 
for YOLOv5 and 0.588 for YOLOv8. In addition, the recall 
value of C. galerita was the highest at 0.992 for YOLOv5 
and 0.983 for YOLOv8. The recall value for the C. sulphurea, 
which showed the lowest value in both models, differed 
most markedly between the two models. The mAP value was 
0.889 for the YOLOv5 model, but 0.919 for YOLOv8. For 
the YOLOv5 model, the AP values ranged from 0.622 for C. 
sulphurea to 0.993 for C. tenuirostris. While, the lowest AP 
was 0.693 for C. sulphurea, while the highest was 0.994 for 
C. tenuirostris in the YOLOv8 model. The inference time of 
YOLOv5 and YOLOv8 models were presented as 8.7 ms and 
11.0 ms, respectively.

The classification results of the two models are presented 
as a confusion matrix (Fig. 2). The average rates at which 
the models correctly classified the 13 Cacatua species were 
79.0% for YOLOv5 and 85.0% for YOLOv8. For YOLOv5, 
the lowest correct classification rate was 41.2% for C. sul-
phurea, while the highest was 98.9% for C. galerita (Fig. 2A). 
This low rate for C. sulphurea was due to its misclassification 
as C. galerita (41.2%), C. sanguinea (5.9%), and high back-
ground FN (11.8%). The misclassification of C. sulphurea as 
C. galerita was the most common type of classification error 
among the results of the YOLOv5 model. This was followed 
by the misclassifications of C. ophthalmica as C. galerita 
and C. moluccensis as C. alba, at rates of 26.1% and 25.0%, 
respectively. Meanwhile, for the YOLOv8 model, C. gale- 
rita was classified most accurately, at a rate of 99.1%, while C. 
sulphurea was classified most inaccurately, at 47.1% (Fig. 2B). 

Cacatua sulphurea, which showed the lowest correct classifi-
cation rate, was misclassified as C. galerita (35.3%), C. citri-
nocristata (5.9%), C. sanguinea (5.9%) and background FN 

(5.9%). Similar to the classification results of YOLOv5, for  
the YOLOv8 model the most common misclassification was 
C. sulphurea as C. galerita. Although the misclassification 
rates of C. ophthalmica as C. galerita and C. moluccensis as C. 
alba were higher than 20.0% for the YOLOv5 model, these 
rates were only 4.3% and 6.2%, respectively, for YOLOv8.

DISCUSSION

Over the past few years, object detection models, particularly 
YOLOv5 and YOLOv8, have been successfully applied to the 
classification of wildlife (Shetty and Ashwath, 2023; Vo et al., 
2023). Despite the classification of traded wildlife is funda-
mental for conservation, few studies have applied deep learn-
ing models to classify traded wildlife (Kim et al., 2022; Baek 
et al., 2023). Although the genus Cacatua in particular has 
been commonly traded legally and illegally, to the best of our 
knowledge no studies have employed a deep learning model 
to classify its species. This study thus applied object detection 
models to classify 13 Cacatua species for the first time, which 
should aid the management and control of their global trade.

According to the present results in terms of mAP, the 
YOLOv8 model showed higher values, reflecting better preci-
sion and recall, than the YOLOv5 model (Table 2). The higher 
mAP values indicated improved performance of the model 
in detecting and classifying the 13 Cacatua species. In addi-
tion, the accurate classification rates of YOLOv8 were higher  

Table 2. Precision, recall, and mean Average Precision (mAP) values for the examined models in 13 Cacatua species

Species
Precision Recall mAP

YOLOv5 YOLOv8 YOLOv5 YOLOv8 YOLOv5 YOLOv8

Cacatua alba 0.700 0.886 0.833 0.780 0.819 0.885
Cacatua citrinocristata 0.956 0.959 0.835 0.893 0.929 0.973
Cacatua ducorpsii 0.901 0.885 0.818 0.773 0.880 0.893
Cacatua galerita 0.975 0.987 0.992 0.983 0.991 0.991
Cacatua goffiniana 0.917 0.907 0.899 0.899 0.949 0.932
Cacatua haematuropygia 0.887 0.961 0.944 0.889 0.981 0.954
Cacatua leadbeateri 0.950 0.957 0.957 0.953 0.970 0.980
Cacatua moluccensis 0.854 0.922 0.730 0.737 0.838 0.867
Cacatua ophthalmica 0.818 0.900 0.565 0.739 0.695 0.894
Cacatua pastinator 0.867 0.917 0.870 0.783 0.925 0.925
Cacatua sanguinea 0.930 0.938 0.947 0.936 0.959 0.968
Cacatua sulphurea 0.688 0.743 0.390 0.588 0.622 0.693
Cacatua tenuirostris 0.970 0.986 0.982 0.977 0.993 0.994

Average 0.878 0.919 0.828 0.841 0.889 0.919



Image Classification of Cacatua Parrots by Deep Learning

271Anim. Syst. Evol. Divers.  40(4), 266-275

than those YOLOv5 due to the lower classification errors in 
YOLOv8 compared to YOLOv5. In the YOLOv5 model, 
the misclassification rates of C. ophthalmica as C. galerita 
and of C. moluccensis as C. alba were 26.1% and 25.0%, 
respectively (Fig. 2A). The YOLOv8 model corrected these 
rates of misclassification of C. ophthalmica as C. galerita and 
C. moluccensis as C. alba (at 4.3% and 6.2%, respectively), 
compared with YOLOv5 (Fig. 2B). The improved mAP and 
classification results of the YOLOv8 model might be due 
to the difference in model architecture from YOLOv5. The 
YOLOv5 model utilizes the anchor box method which of ini-

tially presents the object predicted by the model in the form of 
boxes (Jocher et al., 2022). The size of the anchor boxes was 
determined when the object detection model was developed 

(Zhong et al., 2020). Although this method has the advantages  
of high detection accuracy, rapid detection, and low require-
ments for computational resources (Yan et al., 2021), the 
model performance can be inferior if the size of anchor boxes 
is not appropriate for the custom dataset (Zhong et al., 2020). 
To overcome this challenge, the YOLOv8 model utilizes the 
anchor-free method, Fully Convolved One-Stage (Jocher et 
al., 2023). This method initially presents the objects predicted 

Fig. 2. Confusion matrix of the YOLOv5 and YOLOv8 models to classify 13 Cacatua species. A, The confusion matrix of the YOLOv5 
model; B, The confusion matrix of the YOLOv8 model. Numbers 1 to 13 indicate the 13 Cacatua species classified in this study (see 
Table 1). FP indicates the background false-positive, while FN points the background false-negative.

A

B
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by the models as a novel center-ness branch and then pro-
vides boxes of suitable size for the predicted objects (Tian et 
al., 2019). This enables more specific learning of the model in 
the process of detecting objects for the provided dataset (Tian 
et al., 2019). Indeed, previous studies reported improved per-
formance of YOLOv8 compared to YOLOv5 in their custom 
datasets due to difference in model architecture (Sary et al., 
2023; Shetty and Ashwath, 2023; Paramita et al., 2024).

Meanwhile, in both models, the AP value of C. sulphurea 
was lower than those of the other species. This may have been 
because relatively few images of this species were used for 
the training of both models (Spiesman et al., 2021; Kim et al., 
2022; Baek et al., 2023). In addition, this species was misclas-
sified as C. galerita at a rate higher than any other misclassi-
fication for both models, at 41.2% for YOLOv5 and 35.3% 
for YOLOv8 (Fig. 2). The morphological similarities between 
C. sulphurea and C. galerita may explain the lower accurate 
classification values for C. sulphurea. Indeed, it has been re-
ported that it is difficult to distinguish C. sulphurea and C. 
galerita, due to its similar morphological features of an erec-
tile yellow crest and predominantly white plumage (Forshaw, 
2010; Parr and Juniper, 2010; Del Hoyo, 2020). Insufficient 
images can also lead to high misclassification between mor-
phologically similar species (Kim et al., 2022; Baek et al., 
2023). Therefore, to increase the AP and classification accu- 
racy of C. sulphurea, future studies should collect comprehen-
sive images of this species including morphological features 
that distinguish these from other species in images.

This study showed that insufficient image data contributed 
to decreased the model performance and increased the classi-
fication errors between morphologically similar species. It is 
similar to previous studies (Kim et al., 2022; Alzubaidi et al., 
2023; Baek et al., 2023; Bjerge et al., 2023). This is an issue 
because the collection of data on rare species, such as endan-
gered ones, is more challenging. Moreover, these particular 
rare species further exacerbate the issue of data imbalance, 
which is recognized as a significant factor contributing to 
decreased model performance (Chan et al., 2023). To fur-
ther improve model performance, various data augmentation 
methods will be applied in future studies. In this study, the  
Albumentation method was used, which included horizontal  
flip, translation, zoom-in, and HSV augmentation, along with 
the Mosaic Augmentation method. Additional data augment- 
ation methods, such as vertical flip, RGB shift, and rotation, 
will be employed in future studies to enhance model perfor-
mance. Moreover, the generative adversarial network model 
has been recently successfully applied to generate image data 
of rare species (Zhang et al., 2023). Therefore, this model 
should be applied to enhance the dataset of Cacatua species,  
especially C. sulphurea, in future work. In addition, the 
YOLOv9 model was newly developed (Wang et al., 2024) very  

recently, so this new model should be used to classify Cacatua  
species. Finally, the models developed here will be provided as  
a mobile application to aid the classification of traded Cacatua  
species in situ.

In conclusion, this study applied the YOLOv5 and YOLOv8  
models to classify 13 Cacatua species in images. According 
to the model performance as assessed by mAP, the YOLOv8 
model outperformed the YOLOv5 model in classifying  
Cacatua species. This is the first study to apply object detec-
tion models to classify species of this genus, and the ongoing 
development of these models may help classify these species 
rapidly and accurately in situ. However, it should be empha-
sized that recent taxonomic research results should be applied 

(Spiesman et al., 2021). Indeed, C. citrinocristata was consi- 
dered a subspecies of C. sulphurea before the taxonomic 
study of subspecies of C. sulphurea began by Collar and 
Marsden (2014). However, this was recently reconsidered, and  
it is now managed as a species in various international conven-
tions and conservation bodies by following the 2023 Interna-
tional Ornithological Congress (IOC) World Bird List v. 13.2 

(https://www.worldbirdnames.org). Moreover, to establish an  
accurate image database based on the morphological features 
of the examined species, the knowledge of taxonomic experts 
is needed. In this respect, cooperation with taxonomic experts 
is essential for the development of deep learning models for 
the more accurate classification of wildlife.
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Appendix 1. The number of images of the 13 Cacatua species collected from three databases

No. Species eBird iNaturalist Google

1 Cacatua alba 97 17 -

2 Cacatua citrinocristata 26 9 72
3 Cacatua ducorpsii 21 12 62
4 Cacatua galerita 5,860 52 -

5 Cacatua goffiniana 204 119 -

6 Cacatua haematuropygia 72 12 -

7 Cacatua leadbeateri 517 278 -

8 Cacatua moluccensis 66 6 -

9 Cacatua ophthalmica 25 8 56
10 Cacatua pastinator 237 17 -

11 Cacatua sanguinea 1,627 16 -

12 Cacatua sulphurea 12 20 32
13 Cacatua tenuirostris 2,766 1,130 -


