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Abstract 

 
Compared with two-stage object detection algorithms, one-stage algorithms provide a better 
trade-off between real-time performance and accuracy. However, these methods treat the 
intermediate features equally, which lacks the flexibility to emphasize meaningful information 
for classification and location. Besides, they ignore the interaction of contextual information 
from different scales, which is important for medium and small objects detection. To tackle 
these problems, we propose an image pyramid network based on dual attention mechanism 
(DAIPNet), which builds an image pyramid to enrich the spatial information while 
emphasizing multi-scale informative features based on dual attention mechanisms for one-
stage object detection. Our framework utilizes a pre-trained backbone as standard detection 
network, where the designed image pyramid network (IPN) is used as auxiliary network to 
provide complementary information. Here, the dual attention mechanism is composed of the 
adaptive feature fusion module (AFFM) and the progressive attention fusion module (PAFM). 
AFFM is designed to automatically pay attention to the feature maps with different importance 
from the backbone and auxiliary network, while PAFM is utilized to adaptively learn the 
channel attentive information in the context transfer process. Furthermore, in the IPN, we build 
an image pyramid to extract scale-wise features from downsampled images of different scales, 
where the features are further fused at different states to enrich scale-wise information and 
learn more comprehensive feature representations. Experimental results are shown on MS 
COCO dataset. Our proposed detector with a 300 × 300 input achieves superior performance 
of 32.6% mAP on the MS COCO test-dev compared with state-of-the-art methods. 
 
 
Keywords: Dual attention mechanism, Adaptive feature fusion module, Progressive 
attention fusion module, Image pyramid network, Multi-scale object detection.  
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1. Introduction 

Recently, deep learning technology has gradually become the popular research direction. 
Relying on deep learning technology, there are many methods that have been proposed for 
object detection, which have achieved remarkable performance. These methods can be divided 
into two categories: one-stage methods and two-stage methods. The two-stage detection 
methods [1, 2, 3, 4, 5, 6, 7] generate region proposals from input images via traditional 
approaches or neural networks. Then all these proposals are sent to the classifier for object 
classification and location.  

In contrast, one-stage detection methods [8, 9, 10, 11] directly regress the coordinates and 
category probabilities of the objects, and the final result can be predicted only through a single 
detection. In [8], Liu et al. propose SSD which introduces a multi-scale prediction into the 
network architecture and balances the detection accuracy and speed. However, due to the lack 
of high-level context exploration, this method shows poor performance on small objects. Some 
works [12, 13, 14, 15, 16] intergrate both low-level and high-level feature representations 
using top-down and bottom-up structures to predict the regression position boxes and category 
probability. Though these methods fully interact high-level semantic information with low-
level detailed information, the loss of the feature information in the massive convolution 
process is irreversible. LRF [17] and EFIP [18] utilize SSD [8] with VGG-16 [19] as the 
backbone network and introduce new auxiliary networks which supplement more spatial 
information at the each detection stages of the backbone network. Nevertheless, they only 
perform a simple fusion operation between the spatial information provided by the auxiliary 
network and the features of the SSD backbone network, which fail to emphasize the 
importance of the information flow between these two parts. Besides, they also ignore the 
interaction of multi-scale meaningful features that are contributed to object detection within 
the backbone network.  

According to above analysis, in this paper, we consider the object detection from three 
aspects: 1) the shallow and deep feature information under different spatial sizes make 
different contributions during the object classification and location process. It is necessary to 
fully incorporate low-level features into high-level space to enrich the feature representations. 
2) The pretained backbone and auxiliary network provide complementary multi-level 
information for the observed objects. We need to conduct more discriminative fusion to 
enhance the network ability for accurate detection. 3) When multi-category object detection is 
performed, the features corresponding to these objects are diverse due to the different types 
and sizes of objects. Therefore, only relying on single-scale image information for feature 
extraction can limite the detection accuracy, espacially on medium and small objects. 

To this end, we propose an image pyramid network, called DAIPNet, which builds an image 
pyramid to enrich the spatial information while emphasizing multi-scale informative features 
based on dual attention mechanism for object detection. The proposed method mainly consists 
of the SSD [8] as pretrained backbone and another auxiliary network to combine the 
advantages of these two networks. Specfically, in DAIPNet, the dual attention mechanism is 
designed to focus on the similarities and differences between features, thereby achieving 
effective feature extraction and interaction. The proposed dual attention mechanism includes 
two modules: adaptive feature fusion module (AFFM) and progressive attention fusion module 
(PAFM). Considering that feature information under different levels in the SSD backbone 
network makes different contributions that are relevant to object detection, AFFM adaptively 
learns the weight coefficients between the features produced by the backbone and auxiliary 
network through attention exploration, and then performs weighted fusion of these features. 
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PAFM progressively concatenates features from multiple scales and automatically learns the 
channel-wise feature correlations to propagate more important features for better 
discriminative ability of our network. In our auxiliary network, we build an image pyramid by 
progressively downsampling the input image and conduct feature extraction along scale 
dimension. Such obtained features are further fused at different states to enrich scale-wise 
information and learn more comprehensive feature representations. Experimental results are 
shown on MS COCO dataset. Our DAIPNet achieves superior performance on MS COCO 
compared with other one-stage algorithms. 

Our contributions can be summarized as follows: 
 We propose an image pyramid network based on dual attention mechanism (DAIPNet) 

for one-stage object detection. Compared with state-of-the-art methods, experiments 
demonstrate the superiority of our DAIPNet. 

 We design a dual attention mechanism that includes an adaptive feature fusion module 
(AFFM) and a progressive attention fusion module (PAFM). The AFFM aims balancing 
the information flow produced by the backbone and auxiliary network. The PAFM 
bridges the connections among different scales and model the channel-wise feature 
correspondences to pay attention to more informative features for object detection. 

 We build an image pyramid within the constructed auxiliary network and extract the 
features from the downsampled images of different spatial resolution. By this way, we 
can further enrich the scale-wise information at different states to learn more 
comprehensive feature representations. 

The remainder of this article is organized as follows. In Section 2, the related work on object 
detection is introduced. The proposed DAIPNet which includes dual attention mechanism and 
image pyramid network is presented in Section 3. The experimental results and comparisons 
with other methods are demonstrated in Section 4. Finally, the conclusion of this article is 
presented in Section 5. 

2. Related Work 
Early traditional object detection algorithms generally use sliding windows to capture the 

target areas on the image, and then classify them according to the extracted features from 
observed input images, which include shape, textures, and color et al.. Based on these features, 
some methods [20, 21, 22, 23] have been proposed for feature extraction to help the detection 
task. However, these methods involve critical manual intervention and thus lead to low 
detection accuracy. Recently, inspired the remarkable improvements of R-CNN [1] in object 
detection, many algorithms employ convolutional neural networks (CNN) to perform feature 
extraction and detection, which show obvious superiority than traditional methods. To 
improve the training and inference speed of R-CNN, in [2], Girshick proposes Fast R-CNN 
that adopts ROI pooling layer to fix the size of the features and multi-task learning strategy to 
constrain the bounding box regression. Moreover, Fast R-CNN feeds the entire image rather 
than only region proposals into the network for feature extraction, which requires less 
computation than R-CNN [1]. Faster R-CNN [3] replaces the selective search algorithm in [1, 
2] with a region proposal network and integrates the generation of regional proposal, extraction 
of features and classification into a unified framework, thus realizing fully end-to-end training. 
There are also some methods that have been presented to further improve the detection 
performance, such as SNIP [24], R-FCN [25], and Cascade R-CNN [26], REN [27] et al.. 

At the same time, some approaches [8, 9, 10, 11, 28, 29] utilize one-stage framework to 
regress the coordinates and category probabilities of the objects, which achieve a good trade-
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off between efficiency and detection accuracy. YOLO [9] removes the candidate areas 
processing in R-CNN and predicts objects in the final output layer according to the whole 
image information, which requires relatively lower inference time. SSD [8] combines 
information from multiple feature maps of different scales to predict objects of various sizes. 
The authors also eliminate proposal generation and feature resampling stages to encapsulate 
the computational cost in a single network. Although the detection accuracy and speed are 
maintained to some extent, it is insufficient for the interaction between the different layers in 
terms of multi-scale object detection. 

Considering the differences of the feature information in different resolution, existing 
methods [12, 13] use top-down feature pyramid network to capture the context information 
under different scales. PANet [14] employs a bottom-up structure on the basic of FPN [13] to 
retain the shallow detail information. Taking into account of the interactivity between multi-
scale feature information, RetinaNet [30], ZigZagNet [15], MSPN [16], NETNet [31], 
WeaveNet [32] are subsequently proposed. In addition, some context modules [33, 34] are 
also used to enhance multi-scale information for object detection. In deep networks, as the 
layer becomes deeper, the feature flow will suffer from the loss of the location and spatial 
information caused by continuous convolution operations. This phenomenon can significantly 
affect the bounding box regression and thus results in features misalignment. To solve this 
problem, some methods [17, 18, 35] combine the pretrained detection network and an auxiliary 
network to inject complementary multi-level information into the detection network. In [17], 
Wang et al. proposes the LRF that utilizes a light-weight scratch network as the auxiliary 
network to supplement useful shallow information to the detection network. However, the 
auxiliary network in LRF [17] only downsamples images with a single scale, which ignores 
the importance and relevance of information from different scales in the process of information 
propagation. In contrast, our DAIPNet uses an image pyramid network to enrich the spatial 
information from multiple downsampled images with different scales. Furthermore, we 
present a dual attention mechanism to exploit the multi-scale features interaction by our bi-
directional design between the detection backbone and auxiliary network. 
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Fig. 1. The overall architecture of our DAIPNet, which consists of SSD, auxiliary network and dual 

attention mechanism. The auxiliary network consists of a lightweight image pyramid. The dual 
attention mechanism includes an adaptive feature fusion module (AFFM) and a progressive attention 

fusion module (PAFM). 
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3. Proposed Method 
In this section, we introduce the key components in our DAIPNet, which includes the 

proposed dual attention mechanism and our auxiliary network. Fig. 1 illustrates the 
architecture of our DAIPNet. We use SSD with VGG [19] as the backbone which provides 
feature maps at different scales for prediction. The auxiliary network progressively learns 
scale-wise feature representations by a constructed image pyramid structure. The extracted 
features are further combined with the features produced by the backbone network to integrate 
complementary information. Moreover, we design the dual attention mechanism, which is 
composed of an adaptive feature fusion module (AFFM) and a progressive attention fusion 
module (PAFM), to efficiently interact with the information of the SSD backbone network and 
auxiliary network. 

3.1 Dual Attention Mechanism 

3.1.1 Adaptive Feature Fusion Module (AFFM) 
Generally, the shallow features contain the location information of objects while the high-

level features mainly retain the semantic information. When the information at different scales 
of the high and low layers are fused, they are adjusted to the same resolution and then added 
together. Nevertheless, in LRF [17], the overall structure integrates not only the contextual 
information of the SSD backbone network, but also the shallow spatial information provided 
by the auxiliary network. LRF takes the features provided by the auxiliary network as weights 
and multiplies them with the corresponding elements of the current prediction layer from the 
backbone network, which means that the elements of the backbone network are scaled one by 
one. Although such weight mapping reflects the importance of the information from the 
backbone network, continuous convolution and pooling operations in the backbone network 
have made small objects lose details seriously in the deep network.  
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Fig. 2. The architecture of AFFM. 

 
Considering that the auxiliary network is composed of a lightweight network with shallow 

spatial information, it can make up for the lack of deep semantics of the backbone network to 
some extent. To this end, we propose an adaptive feature fusion module (AFFM) to 
automatically balance the information flow with different importance from the SSD backbone 
and auxiliary network. As can be observed from Fig. 2, in AFFM, instead of employing the 
feature of the auxiliary network as a weight mapping, we try to dynamically treat the features 
of different layers through the attention exploration, in which network adaptively learns the 
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weight coefficients of the auxiliary network and the SSD backbone network. Then the learned 
weight coefficients obtained are multiplied with the corresponding feature maps. Here, 
supposing 𝐿𝐿 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 is the feature from the auxiliary network, while 𝐵𝐵 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 refers 
to the feature from the SSD backbone network. We perform an element-wise sum operation 
to obtain the output 𝑂𝑂𝑖𝑖 of the current layer for the 𝑖𝑖𝑡𝑡ℎ scale as follows: 

𝑂𝑂𝑖𝑖 =  𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖 + (1 −𝜔𝜔𝑖𝑖)𝐵𝐵𝑖𝑖                                                   (1) 
where 𝜔𝜔𝑖𝑖 is the weight coefficient with an initial value of 0 and adaptively updated during the 
training process to balance the importance of different layers for feature fusion.  

In addition, to strengthen the connection between the high and low layers of the SSD 
backbone network for the integration of 𝐵𝐵𝑖𝑖, a residual block is designed to capture features 
from the mainstream feature 𝐸𝐸𝑖𝑖  for obtaining effective semantic information. Here, 𝐸𝐸𝑖𝑖 ∈
ℝℎ𝑖𝑖×𝑤𝑤𝑖𝑖×𝑐𝑐𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ feature output by the SSD backbone network. In order to combine the 
mainstream features 𝐸𝐸𝑖𝑖  with the reference features 𝐸𝐸𝑖𝑖−1  from the previous layer of the 
backbone network, we downsample 𝐸𝐸𝑖𝑖−1 to the same scale as 𝐸𝐸𝑖𝑖 , and then capture texture 
information by a similar residual block. After that, the extracted features and the semantic 
information from 𝐸𝐸𝑖𝑖 are fused through a short connection to learn more comprehensive feature 
representations. In our implementation, we explain this process by: 

𝐵𝐵𝑖𝑖 = ℛ(𝒟𝒟(𝐸𝐸𝑖𝑖−1) + ℛ(𝐸𝐸𝑖𝑖)) + ℛ(𝐸𝐸𝑖𝑖)                                       (2) 
where ℛ represents the function of the residual block, 𝒟𝒟(⋅) is a downsampling operation to 
match features from different scales. In summary, the context feature of the backbone network 
and the feature of the auxiliary network are interacted through the attention and residual blocks 
to obtain the final output 𝑂𝑂𝑖𝑖 as:  

𝑂𝑂𝑖𝑖 =  𝜔𝜔𝑖𝑖𝐿𝐿𝑖𝑖 + (1 −𝜔𝜔𝑖𝑖) (ℛ(𝒟𝒟(𝐸𝐸𝑖𝑖−1) + ℛ(𝐸𝐸𝑖𝑖)) + ℛ(𝐸𝐸𝑖𝑖))                      (3) 

3.1.2 Progressive Attention Fusion Module (PAFM) 
Considering that the channel mapping between features is interdependent and different 

semantic information is also related to each other, we present to enhance the feature 
representations by emphasizing the channel-wise interdependence through attention 
mechanism. Therefore, we design a progressive attention fusion module (PAFM) to adaptively 
learn correlation between channels by progressively fusing multi-scale features. PAFM aligns 
the features 𝑋𝑋 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 from different scales to a specific scale using upsampling operation, 
and then performs a concatenation operation on them by a progressive manner to obtain 𝑋𝑋𝑐𝑐𝑐𝑐𝑡𝑡 ∈
ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶. 

𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝒰𝒰(𝑋𝑋𝑖𝑖+1),𝒰𝒰(𝑋𝑋𝑖𝑖+2), … ,𝒰𝒰(𝑋𝑋𝑛𝑛)�, 𝑖𝑖 ∈ [1,𝑛𝑛 − 1]                     (4) 
where 𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ scale and 𝑛𝑛 = 4 denotes the number of feature pyramid levels selected 
for context interaction. 𝐶𝐶𝐶𝐶𝐶𝐶(⋅)  and 𝒰𝒰(⋅)  denote the concatenation and the upsampling 
operation, respectively. Then, global average pooling (GAP) is used to obtain the global 
descriptor 𝒛𝒛𝑖𝑖 ∈ ℝ𝑛𝑛𝐶𝐶 from 𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 with the size of 1 × 1 × nC.  

𝑧𝑧𝑖𝑖,𝑐𝑐 = 𝐺𝐺𝐺𝐺𝐺𝐺�𝑋𝑋𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡� = 1
𝐻𝐻×𝑊𝑊

∑ ∑ 𝑋𝑋𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑊𝑊
𝑛𝑛=1

𝐻𝐻
𝑚𝑚=1 (𝑚𝑚,𝑛𝑛)                           (5) 

where 𝑋𝑋𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 represents the 𝑐𝑐𝑡𝑡ℎ element of 𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 at the position (𝑚𝑚,𝑛𝑛).  
After that, two 1 × 1 convolutions, 𝒞𝒞1×1

1  and 𝒞𝒞1×1
2 , are adopted to form a gate mechanism 

𝑋𝑋𝑖𝑖
𝑔𝑔  for dimensionality reduction and increasing. Here, 𝒞𝒞1×1

1  reduce the dimensionality of 
features and 𝒞𝒞1×1

2  adjust the feature to the same size as 𝒛𝒛𝑖𝑖: 
𝑋𝑋𝑖𝑖
𝑔𝑔 =  𝒞𝒞1×1

2 (𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅(𝒞𝒞1×1
1 (𝒛𝒛𝑖𝑖)))                                             (6) 
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where 𝑋𝑋𝑖𝑖
𝑔𝑔 ∈  ℝ𝑛𝑛𝐶𝐶 is the feature after dimension change through the  𝒞𝒞1×1

1  and 𝒞𝒞1×1
2 . Next, we 

adopt the sigmoid function 𝜎𝜎 to get the channel weight mapping and multiply it with the input 
𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡 to allocate each channel a weight. The process is shown as following: 

𝑋𝑋𝑖𝑖𝑐𝑐𝑡𝑡𝑡𝑡 =  𝜎𝜎(𝑋𝑋𝑖𝑖
𝑔𝑔) ⋅  𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡                                                 (7) 

where 𝑋𝑋𝑖𝑖𝑐𝑐𝑡𝑡𝑡𝑡 is the 𝑖𝑖𝑡𝑡ℎ output feature processed by the channel-wise multiplication. 
During the training processing, the network filters unimportant channel values and captures 

informative features around objects by adaptively learning the correlation between channels 
of different scale features. Furthermore, considering that the feature information on the current 
scale is superior to predicting objects of this scale than other scales, as shown in the Fig. 3, we 
treat the features of the current layer as a separate branch, fuse it with 𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡  to obtain the 
intermediate result 𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖 though a 1 × 1 convolution and a concatenation operation, and then 
𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖needs to be concatenated with 𝑋𝑋𝑖𝑖𝑐𝑐𝑡𝑡𝑡𝑡, thus ensuring the dominance of the current layer 
while emphasizing the important channel values. 

𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝒞𝒞1×1
3 (𝑋𝑋𝑖𝑖),  𝒞𝒞1×1

4 (𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑡𝑡))                                     (8) 
𝐺𝐺𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝒞𝒞1×1

5 (𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖),  𝒞𝒞1×1
6 (𝑋𝑋𝑖𝑖𝑐𝑐𝑡𝑡𝑡𝑡))                                     (9) 

where 𝐺𝐺𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎoutput feature for final prediction, 𝒞𝒞1×1
𝑛𝑛 (𝑛𝑛 = 3, 4, 5, 6) represents the 

convolution operation that is designed to match the features with different resolution. 
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Fig. 3. The architecture of PAFM. 

3.2 Image Pyramid Network (IPN) 
In object detection, the image pyramid is often used to solve the scale problem. In the early 

days, the objects of different sizes in the images can be detected by changing the form of 
sliding window. Recently, it is common to use the same sliding window and change the image 
size to detect objects with inconsistent scales in the images. Since the information conveyed 
by the image on each scale is different, previous method [17] merely introduces single-scale 
images as supplement to enrich the detailed information that is lost in the backbone network. 
Therefore, in our framework, we build an image pyramid network (IPN) to enhance the spatial 
information of the auxiliary network. For an input image 𝐼𝐼  as in Fig. 1, we continuously 
downsample it to obtain an image pyramid network 𝐼𝐼𝑝𝑝 = {𝐼𝐼𝑝𝑝1,  𝐼𝐼𝑝𝑝2, … , 𝐼𝐼𝑝𝑝𝑖𝑖 }, where 𝑖𝑖 represents 
the number of the image pyramid network levels. The downsampling process is constructed 
as:  

𝐼𝐼𝑝𝑝1 =  𝒟𝒟(𝐼𝐼𝑝𝑝)                                                              
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  𝐼𝐼𝑝𝑝2 =  𝒟𝒟(𝐼𝐼𝑝𝑝1)                                                              
⋮                                                                           

𝐼𝐼𝑝𝑝𝑖𝑖 =  𝒟𝒟(𝐼𝐼𝑝𝑝𝑖𝑖−1)                                                   (10) 
where 𝒟𝒟(⋅) denotes the downsampling operation that pools the input  𝐼𝐼 to the same scale as 
the prediction layers in [8]. Then we adopt a lightweight convolution group 𝒢𝒢, including two 
3 × 3  convolutions and one 1 × 1  convolution, to extract shallow features 𝐹𝐹𝑝𝑝𝑖𝑖  from all 
downsampled images 𝐼𝐼𝑝𝑝𝑖𝑖  as: 

𝐹𝐹𝑝𝑝𝑖𝑖 =  𝒢𝒢(𝐼𝐼𝑝𝑝𝑖𝑖 )                                                          (11) 
Furthermore, in order to maximize the contribution of 𝐹𝐹𝑝𝑝𝑖𝑖, we also use the iterative 3 × 3 

convolution with stride 2 to obtain the features 𝑀𝑀𝑛𝑛
1 = {𝑀𝑀1

1,𝑀𝑀2
1, … ,𝑀𝑀𝑛𝑛

1} of the same size as the 
SSD prediction layers for the first scale feature of the image pyramid. Here, we set the 𝑛𝑛 as 3: 

𝑀𝑀1
1 = 𝒞𝒞3×3

1 (𝐹𝐹𝑝𝑝1)                                                            
𝑀𝑀2
1 = 𝒞𝒞3×3

2 (𝑀𝑀1
1)                                                           

𝑀𝑀3
1 = 𝒞𝒞3×3

3 (𝑀𝑀2
1)                                                  (12)  

where 𝒞𝒞3×3
𝑛𝑛  represents the convolution with stride 2. Finally, we perform an element-wise sum 

operation between 𝐹𝐹𝑝𝑝𝑖𝑖 and 𝑀𝑀𝑛𝑛
1 to achieve the comprehensive feature representation 𝐿𝐿𝑖𝑖. 

𝐿𝐿𝑖𝑖 =  � 
𝐹𝐹𝑝𝑝𝑖𝑖,                                 𝑖𝑖 = 1                            
𝐹𝐹𝑝𝑝𝑖𝑖 +  𝑀𝑀𝑛𝑛

1 ,    𝑤𝑤ℎ𝑅𝑅𝑒𝑒𝑅𝑅  𝑛𝑛 = 𝑖𝑖 − 1 𝐶𝐶𝑛𝑛𝑎𝑎 𝑖𝑖 > 1  
                     (13) 

4. Experiments 

4.1 Datasets 

4.1.1 MS COCO 
In terms of object detection, MS COCO [36] is the most common dataset that has 143k 

images and 80 object categories. These images are divided into three parts: 118k images for 
training, 20k images for testing and 5k images for validation. In addition, CodaLab provides 
a special evaluation standard for MS COCO dataset and gives 6 Average Precision (AP) 
indicators according to IOU threshold and object size. 

4.1.2 PASCAL VOC  
PASCAL VOC 2007 and PASCAL VOC 2012 are two classic datasets in PASCAL VOC 

[37] which contains 20 different object categories for classification and detection. The models 
are usually trained on the trainval set with 16k images provided by VOC2007 and VOC2012 
and tested on the PASCAL VOC 2007 test set with 5k images. PASCAL VOC provides an 
official indicator, the mean average accuracy (mAP), to measure the accuracy of the models. 

4.2 Implementation Details 
All our experiments are implemented based on Pytorch framework and Titan Xp GPUs. 

During the experiments, we employ VGG-16 pre-trained on ImageNet [38] to initialize our 
network. We set the initial learning rate to 4 × 10−3. During the training process, the learning 
rate decreases by a factor of 0.1 at 90 epochs, 120 epochs, and 140 epochs for the MS COCO 
dataset. In PASCAL VOC, the same learning rate decreases at 150 and 200 epochs. Besides, 
to make the later training of the model more stable, we adopt the warmup strategy following 
[33]. Specifically, the learning rate gradually increases from 10−6 to the 4 × 10−3 during the 
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first 6 epochs. We usually set the weight decay as 5 × 10−4, the momentum as 0.9 and the 
batch size as 32. Here, for different input sizes, we adjust the value of batch size due to the 
limitation of GPUs. In other aspects, our loss function, data enhancement and other training 
details are the same as SSD [8]. We obtain superior detection accuracy when the model is 
trained to 160 epochs on MS COCO and 250 epochs on PASCAL VOC, respectively. 

4.3 MS COCO Dataset 

4.3.1 Comparing with State-of-the-Arts  
We evaluate our approach on MS COCO test-dev dataset and compare with state-of-the-art 

object detection approaches. Table 1 shows the detection results. For a 300 × 300 input, our 
DAIPNet obtains the mAP of 32.6, which surpasses about 0.6 compared with the most state-
of-the-art method LRF. In addition, the performance for AP75 is largely improved by 0.9 while 
the performance for AP50 is improved by 0.4, which demonstrate the effectiveness of DAIPNet. 
Even on medium and small objects, our method can achieve 1.5 and 0.3 gains in terms of APm 
and APs. In contrast, RefineDet [34], EFIP [18] and RFBNet [33] achieve AP scores of 29.4, 
30.0 and 30.3, respectively. Our detector obtains more accurate results than these methods 
under the same backbone. Besides, compared with the recently proposed NETNet [31], our 
method far surpasses NETNet on medium objects and large objects. Especially for the medium 
objects, our method is nearly 2.0 better than NETNet. 

For a 512 × 512 input, as shown in Table 1, our DAIPNet is still significantly superior 
than LRF with the same input size and backbone. Besides, though the RetinaNet+AP-loss [39] 
performs slightly better than our method, due to the large-size input image (832 × 500) and 
more complex backbone ResNet101-FPN, it spends twice time cost as our method. Meanwhile, 
compared with other one-stage detection algorithms, the detection accuracy in Table 1 
demonstrates the superior performance of our DAIPNet on medium objects. 

 

  
Fig. 4. Speed (ms) vs. accuracy (mAP) on MS COCO test-dev. 

 
Moreover, we show the comparison of inference speed and detection accuracy with other 

detectors in Fig. 4. The blue and red triangles represent the detection results under different 
input sizes (300 × 300, 512 × 512), and the circles of different colors are the results of other 
methods with an input of 512 × 512. It can be seen intuitively from Fig. 4 that our DAIPNet 
is significantly better than other detectors in balancing detection accuracy and inference speed.  
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Table 1. Comparison of our DAIPNet on MS COCO test-dev. We test the time on a Titan Xp. * 
represents the time obtained by testing in the same environment with DAIPNet. 

Method Backbone size Time(ms) AP AP50 AP75 APs APm APl 

Two-stage Method: 
Faster R-CNN 
[3] VGG-16 1000×600 147 24.2 45.3 23.5 7.7 26.4 37.1 

Mask R-CNN 
[4] 

ResNeXt-
101-FPN 1280×800 210 39.8 62.3 43.4 22.1 43.2 51.2 

FPN [13] ResNet-
101-FPN 1000×600 240 36.2 59.1 39.0 18.2 39.0 48.2 

Cascade R-
CNN [26] 

ResNet-
101-FPN 1280×800 141 42.8 62.1 46.3 23.7 45.5 55.2 

One-stage Method: 
SSD [8] VGG-16 300×300 12 25.3 42.0 26.5 6.2 28.0 43.3 
DSSD [12] ResNet-101 321×321 - 28.0 46.1 29.2 7.4 28.1 47.6 
RFBNet [33] VGG-16 300×300 15(21*) 30.3 49.3 31.8 11.8 31.9 45.9 
RefineDet [34] VGG-16 320×320 26 29.4 49.2 31.3 10.0 32.0 44.4 
EFIP [18] VGG-16 300×300 14 (22*) 30.0 48.8 31.7 10.9 32.8 46.3 
LRF [17] VGG-16 300×300 13 (20*) 32.0 51.5 33.8 12.6 34.9 47.0 
NETNet [31] VGG-16 300×300 18 32.0 51.5 33.6 13.9 34.5 46.2 
Ours VGG-16 300×300 23 32.6 51.9 34.7 12.9 36.4 47.6 
SSD [8] VGG-16 512×512 28 28.8 48.5 30.3 10.9 31.8 43.5 
DSSD [12] ResNet-101 513×513 156 33.2 53.3 35.2 13.0 35.4 51.1 
YOLOv3 [11] DarkNet-53 608×608 51 33.0 57.9 34.4 18.3 35.4 41.9 
RFBNet [33] VGG-16 512×512 33 (36*) 34.4 55.7 36.4 17.6 37.0 47.6 
RefineDet [34] VGG-16 512×512 45 33.0 54.5 35.5 16.3 36.3 44.3 

RetinaNet [30] ResNet-
101-FPN 832×500 90 34.4 55.7 36.8 14.7 37.1 47.4 

RetinaNet+AP-
Loss [39] 

ResNet-
101-FPN 832×500 91 37.4 58.6 40.5 17.3 40.8 51.9 

EFIP [18] VGG-16 512×512 29 34.6 55.8 36.8 18.3 38.2 47.1 
LRF [17] VGG-16 512×512 26 (34*) 36.2 56.6 38.7 19.0 39.9 48.8 
NETNet [31] VGG-16 512×512 33 36.7 57.4 39.2 20.2 39.2 49.0 
Ours VGG-16 512×512 41 37.0 57.5 39.7 19.8 42.3 48.8 

 

4.3.2 Ablation Studies 
In order to verify the effectiveness of the image pyramid network (IPN) and the dual 

attention mechanism, we conduct a series of experiments on the MS COCO validation set with 
a 300 × 300 input. We first train a baseline model without any proposed component and adopt 
LRF as reference for comparisons, where the results are shown in Table 2. We first validate 
the AFFM in the dual attention mechanism. As we can see, AFFM improves the baseline by 
0.3 AP. Among them, the detection performance of large objects increases by 0.9 AP, and the 
detection performance increases by 0.7 on medium objects. It benefits from that AFFM 
automatically learns the importance of different information through the attention mechanism 
and focuses on our contextual information simultaneously. At the same time, it also proves 
that our AFFM has better feature extraction capabilities, which can make a trade-off of 
information between the backbone and auxiliary network. 

It also can be observed that AFFM makes detection accuracy of the small objects drop 
slightly. It may be that the network emphasizes the feature of the large objects and weakens 
the expression of the small objects relatively when using the residual block for context 
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interaction. As for IPN, in Table 2, we can observe that the model using IPN can obtain 
obvious performance improvement on small objects (12.6 to 13.3 AP), which means the 
complementary information from IPN benefits the feature maps at low levels and improves 
the feature representation. 

 
Table 2. Ablation Studies on MS-COCO val. 

LRF AFFM IPN PAFM AP AP50 AP75 APs APm APl 
√    31.9 51.4 33.6 13.4 36.3 47.6 
√ √   32.2 51.4 34.0 12.6 37.0 48.5 
√ √ √  32.2 51.1 34.2 13.3 37.0 48.6 
√ √ √ √ 32.4 51.5 34.3 13.7 37.3 48.8 

 
Moreover, we visualize the features associated with predicting small objects as shown in 

Fig. 5. All features are extracted and visualized on the same scale. The first column (a) shows 
the detection results of LRF and our DAIPNet. The second (b) and third (c) columns represent 
features from the backbone and auxiliary networks, respectively. The fourth column (d) shows 
the output features via the first AFFM module. The last column (e) represents the output 
features via the first PAFM module for prediction. 

As shown in Fig. 5, for the baseball ignored by LRF in the first column (a), it can be seen 
from the column (e) that the corresponding feature of the baseball is not obvious compared 
with other features. However, in our DAIPNet, since the feature of baseball is treated equally 
with the other little features in column (e), the baseball can be accurately detected by our 
network in column (a). Besides, in our DAIPNet, the features of objects (people, baseball, 
glove) from the auxiliary network contain abundant spatial information, and the features of the 
column (d) have clearer outlines and more details than the features of the backbone network. 
It indicates that the auxiliary network compensates for the tiny features lost by the backbone 
network, and further proves that IPN can focus on more medium and small objects to improve 
the feature representation and AFFM can fully integrate the information the backbone and 
auxiliary network to learns the importance of different information. 

On the basis of the AFFM and IPN, the experimental result of employing the progressive 
attention fusion module (PAFM) has increased by 0.5 AP compared with LRF. In Table 2, 
there is a slight improvement in each metric for calculating AP, which confirms the 
effectiveness of our PAFM. The detection accuracy is improved because PAFM allows the 
network to adaptively learn the correlation and importance between channels to some extent. 
Besides, this attention mechanism enables the high-level features containing more information 
of semantic details to interact with low-level features which contain more spatial information. 
Furthermore, Fig. 6 shows detection examples, which verifies that our DAIPNet has a good 
detection performance for objects of different size. 
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Fig. 5. The detection results and feature visualization of LRF and our DAIPNet. The first column (a) 
shows the detection results of LRF and our DAIPNet. The second (b) and third (c) columns represent 

features from the backbone and auxiliary network, respectively. The fourth column (d) shows the 
output feature via the first AFFM module. The last column (e) represents the output features via the 

first PAFM module for prediction. 
 

4.4 PASCAL VOC Dataset 
Here, we validate our DAIPNet on PASCAL VOC 2007 dataset [37].  Table 3 shows the 

performance comparison with other detection methods on the VOC 2007 test set.  For two-
stage detectors, R-FCN [25] achieves excellent detection performance due to the larger input 
size and the deeper backbone ResNet-101. Among one-stage detectors, the detection results 
of LRF [17] are trained and tested in the same environment with DAIPNet. For a 300 × 300 
input, our DAIPNet obtains the mAP of 80.0 that is the same as the detection result of 
RefineDet [34]. However, the input size of RefineDet is 320 × 320, which is larger than our 
input size. Besides, when adopting a 512 × 512  input, our DAIPNet is 0.4 better than 
RefineDet. For a 512 × 512 input, our DAIPNet achieves AP scores of 82.2 that is slightly 
higher than other detectors, which also verifies the effectiveness of our network to a certain 
extent. Fig. 7 shows detection examples for our approach on PASCAL VOC 2007 test set. 
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Table 3. Comparison of our DAIPNet on PASCAL VOC 2007 test set. * represents the time obtained 
by training and testing in the same environment with DAIPNet. 

Method Backbone Input size mAP 
Two-stage Method: 
Faster R-CNN [3] ResNet-101 1000×600 76.4 
R-FCN [25] ResNet-101 1000×600 80.5 
One-stage Method: 
SSD [8] VGG-16 300×300 77.2 
DSSD [12] ResNet-101 321×321 78.6 
RefineDet [34] VGG-16 320×320 80.0 
WeaveNet [32] VGG-16 320×320 79.7 
DES [29] VGG-16 300×300 79.7 
DFPR [28] VGG-16 300×300 79.6 
LRF [17] VGG-16 300×300   79.8* 
Ours VGG-16 300×300 80.0 
SSD [8] VGG-16 512×512 79.5 
DSSD [12] ResNet-01 513×513 81.5 
RefineDet [34] VGG-16 512×512 81.8 
DES [29] VGG-16 512×512 81.7 
DFPR [28] VGG-16 512×512 81.1 
RFBNet [33] VGG-16 512×512 82.1 
LRF [17] VGG-16 512×512   82.0* 
Ours VGG-16 512×512 82.2 

 
Fig. 6. Qualitative detection results of our DAIPNet on MS COCO test-dev. 
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Fig. 7. Qualitative detection results of our DAIPNet on PASCAL VOC 2007 test set. 

5. Conclusion 
In this paper, we discuss the inherent problems in LRF caused by insufficient interaction of 

multi-scale features. Based on the observation, we propose an image pyramid network based 
on dual attention mechanism (DAIPNet) to further explore the effect of different scale features. 
By integrating dual attention mechanism and the image pyramid structure, DAIPNet improve 
the detection performance by a large margin on MS COCO. In this work, the proposed method 
aims at tackling general object detection task. However, compared with the detection results 
of medium and large objects, the model shows limited improvements on small objects. 
Furthermore, our study finds out that the loss of feature information is inevitable with the 
deepening of convolution network and the change between scales. In the future, we will do 
more attempts on network designing and better feature representation learning for small object 
detection. 
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