• 제목/요약/키워드: object detection algorithm

검색결과 947건 처리시간 0.032초

색 검지 알고리즘을 이용한 무인 사고방지 아두이노 로봇 개발 (Unmanned accident prevention Arduino Robot using color detection algorithm)

  • 이호정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.493-497
    • /
    • 2015
  • 본 연구는 이동수단의 기술적 발전에도 불구하고 교통사고로 인한 물적, 인적 피해가 감소하지 않는 문제에 대한 관심에서 출발했다. 현재 생산되고 있는 차량은 전후방 센서에 의해 객체의 근접도만을 감지하여 운전자에게 알려주고 있는데 본 연구는 색 검지 알고리즘, 원모양인식 알고리즘, 거리인식 알고리즘을 구현하여 객체가 감지되면 해당 객체를 회피하거나 차량을 정지시켜주도록 하여 사고감지를 넘어선 사고방지 시스템을 구축한 것이다. 시뮬레이션을 위해 소형무선통신 카메라를 장착한 아두이노 차량 로봇을 직접 제작하여 모의 도로 주행에서 로봇이 성공적으로 객체를 회피하거나 로봇 차량이 정지하는 것을 확인하였다.

  • PDF

영상열에서의 유동적 형태의 이동물체 판별에 관한 연구 (The Moving Object Detection Of Dynamic Targets On The Image Sequence)

  • 이호
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.41-47
    • /
    • 2001
  • 본 연구에서는 카메라로부터 입력되는 영상열에서 사람과 같은 유동적인 이동 물체를 신뢰성 있게 판별하는 방법을 제안한다. 실시간 처리가 요구되는 시스템으로 빠른 수행속도와 적은 계산망, 신뢰성 있는 동작을 위해 입력영상과 참고영상에서 차영상을 구하고, 차영상의 히스토그램을 분석하여 여러개의 임계치을 결정한 후, 이를 사용하여 이동물체 영역을 신뢰성 있게 분리하고, 효율적으로 패턴을 분류할 수 있는 신경망을 이용하여 분리된 영역을 판별한다. 제안된 방법은 실제 상황에서 얻은 다양한 영상을 적용하여 실험하였으며, 4개층의 신경망을 적용하여 이동물체 검출 결과를 제시한다.

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정 (Object Detection and 3D Position Estimation based on Stereo Vision)

  • 손행선;이선영;민경원;서성진
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.318-324
    • /
    • 2017
  • 본 항공기에 스테레오 카메라를 장착하여 영상 기반의 비행 객체 탐지 및 탐지된 객체의 3차원 위치를 추정하는 방법을 제시하였다. 구름 사이에 존재할 수 있는 원거리의 작은 객체를 탐지하기 위한 방법으로 PCT 기반의 Saliency Map을 생성하여 이용하였으며, 이렇게 탐지된 객체는 좌우 스테레오 영상에서 매칭을 수행하여 스테레오 시차(Disparity)를 추출하였다. 정확한 Disparity를 추출하기 위하여 비용집적(Cost Aggregation) 영역을 탐지 객체에 맞추어 가변되도록 가변 영역으로 사용하였으며, 본 논문에서는 Saliency Map에서 객체의 존재 영역으로 검출된 결과를 사용하였다. 좀 더 정밀한 Disparity를 추출하기 위하여 Sub-pixel interpolation 기법을 사용하여 Sub-pixel 레벨의 실수형 Disparity를 추출하였다. 또한 이에 카메라 파라미터를 적용하여 실제 탐지된 비행 객체의 3차원 공간 좌표를 생성하여 객체의 공간위치를 추정하는 방법을 제시하였다. 이는 향후 자율비행체의 영상기반 객체 탐지 및 충돌방지 시스템에 활용될 수 있을 것으로 기대된다.

저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘 (Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System)

  • 장정욱;인치호
    • 한국ITS학회 논문지
    • /
    • 제19권3호
    • /
    • pp.129-136
    • /
    • 2020
  • 본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용 (Application of object detection algorithm for psychological analysis of children's drawing)

  • 임지연;이성옥;김경표;유용균
    • 한국산업정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.1-9
    • /
    • 2021
  • 아동 그림은 내면의 감정을 표현할 수 있는 수단으로 아동 심리 진단에 널리 이용되고 있다. 본 논문에서는 아동 그림 분석에 적용할 수 있는 아동 그림 기반의 객체 탐지 알고리즘을 제안한다. 먼저 사진에서의 그림 영역을 추출하였고 데이터 라벨링 과정을 수행하였다. 이후 라벨링된 데이터 셋를 사용하여 Faster R-CNN 기반 객체 탐지모델을 학습하고 평가하였다. 탐지된 객체 결과를 기반으로 그림 면적 및 위치 또는 색상 정보를 계산하여 그림에 대한 기초정보를 쉽고 빠르게 분석할 수 있도록 설계하였다. 이를 통해 아동 그림을 이용한 심리분석에 있어 인공지능 기반 객체 탐지 알고리즘의 활용성을 보였다.

실시간 영상 분석에 의한 이동 물체 추적 (Moving Object Tracking by Real Time Image Analysis)

  • 구상훈;이은주
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.145-156
    • /
    • 2003
  • This paper for real time object tracking in this treatise detect histogram analysis that is accumulation value of binary conversion density and edge information and body that move by real time use of difference Image techniques and proposed method to object tracking. Firstly, we extract edge that can reduce quantity of data keeping information about form of input image in object detection. Object is extracted by performing difference image and binarization in edge image. Area of detected object is determined by threshold value that divide sum of horizontal accumulation value about binary conversion density by value that add horizontalityㆍverticality maximum accumulation value. Object is tracked by comparing similarity with object that is detected in previous frame and present frame. As experiment result, proposed algorithm could improve the object detection speed, and could track object by real time and could track local movement.

  • PDF

딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발 (Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels)

  • 이규범;신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1161-1175
    • /
    • 2018
  • 도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.

단일 레이저 스캐너를 이용한 모바일 로봇의 장애물 탐색 및 분리 알고리즘 (Obstacle Detection and Classification Algorithm of Mobile Robots using a Single Laser Scanner)

  • 이기룡;좌동경;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.385-386
    • /
    • 2007
  • This paper proposes obstacle detection and classification algorithm using a single laser scanner. The proposed algorithm searches the object singular points using a differential equation, and finds obstacle singular points shows a boundary of obstacle. And the proposed algorithm can classify object even if several obstacles overlapped. Simulation results show the feasibility of proposed algorithm using a single laser scanner, not using several laser scanners.

  • PDF