• Title/Summary/Keyword: nutrient solution control

Search Result 444, Processing Time 0.022 seconds

Hydroponic Culture Possibility and Optimal Solution Strength of 'Pechika' Ever-bearing Strawberry on Highland in Summer (사계성 페치카' 딸기의 고랭지 여름철 양액재배 가능성 및 적정 양액농도 검토)

  • Rhee Han-Cheol;Kang Nam-Jun;Rho Il-Rae;Jung Ho-Jung;Kwon Joon-Kook;Kang Kyung-Hee;Lee Jae-Han;Lee Sung-Chan
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2006
  • This experiment was conducted to investigate the hydroponic culture possibility and the optimal solution strength of 'Pechika' ever-bearing strawberry in summer highland. Maximum room temperature and minimum root zone temperature of plastic house were $30.8^{\circ}C\;and\;19^{\circ}C$ in highland respectively and $4^{\circ}C\;and\;3^{\circ}C$ lower than in level and. The growth of 'Pechika' was better in highland. There was effective in producing the good yield and fruit quality in highland and the deformed fruits also were decreased. The soluble solid and titratable acidity content increased in highland. Early growth was the most effective in standard solution $(EC\;0.75dS\;m^{-1})$ and had a tendency to be inhibition with increasing nutrient concentration. Standard solution was also the highest to yield about 2,064kg/10a among treatments, and 2/3S, 4/3S, 5/3S by turns. The browning roots and root activity increased when the solution strength was increased, especially in EC $1.25dS{\cdot}m^{-1}$. The soluble solids and acidity content of fruits were increased with higher solution strength. Therefor, the summer hydroponic culture of 'Pechika' ever-bearing strawberry was suitable in highland and effective in standard solution $(EC\;0.75dS{\cdot}m^{-1})$ in solution control.

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.

Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

  • Saikia, Ratul;Srivastava, Alok K.;Singh, Kiran;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that an the bacterial isolates produced more salicylic acid (SA) at low iron ($10\;{\mu}M$ EDDHA) than high iron availability ($10\;{\mu}Fe^{3+}$ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

Continuos-Flow culture of Hepatocytes in Sugar-derivatized poly (lactide-co-glycolide) Scaffolds Prepared by Gas-foaming/salt-leaching Method

  • Yun, Jun-Jin;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.141-144
    • /
    • 2000
  • Highly open porous polymer matrices are required for high density cell seeding, efficient nutrient, and oxygen supply to the cells cultured in the three dimensional matrices. However, there are severe problems of mass transfer limitations within the cell/scaffolds culture system. Thus we hypothesize that continuos-flow culture conditioning of cells with the scaffolds may improve the cell viability and the differentiated function. In this study, we fabricated porous PLGA scaffolds by using gas-foaming/salt-leaching method as previous described. Viscous PLGA gel paste contains ammonium bicarbonate particulates, acting as a gas-foaming agent as well as a salt-leaching porogen, were cast into Teflon mold and dried. Ammonium bicarbonate salt upon contact to an acidic aqueous solution evloves gaseous ammonia and carbon dioxide by itself. And we conjugated galactose moiety [AGA; $N-(aminobuty1)-O-{\beta}-D-galactopyranosyl-(1{\rightarrow}4)-D-glucoamide]$ to the terminal end group of a PLGA to increase the cell adhesion and matain the differentiated function of hepatocytes. Cell-seeded scaffolds were secured in a flow bioreactor chamber and exposed to continuous flow at 5 ml/min. As a result of our study, the high yield of hepatocytes attachment was accomplished by increasing the concentration of PLGA-AGA conjugate in polymer scaffolds and cells in the scaffolds under continuos flow condition maintained a high level of viability and albumin secretion rate of cultured hepatocytes showed a higher level that of control groups.

  • PDF

Allelopathic and Autotoxic Effects of Alfalfa Plant and Soil Extracts

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Alfalfa (Medicago sativa L.) plants have been reported to be autotoxic as well as allelopathic. Laboratory and greenhouse experiments through petri-dish and pot test were conducted to determine autotoxic effects of alfalfa leaf and soil extracts on the germination or early seedling growth of alfalfa, and to evaluate allelopathic effects of alfalfa leaf residues on alfalfa, barnyard grass, com, eclipta and soybean. Alfalfa seed germination was delayed depending on aqueous extract concentration, with no difference in final germination after 48 hours. Alfalfa root length was more sensitive to the autotoxic chemicals from leaf extracts than was germination or shoot length. Root growth of alfalfa was significantly inhibited at extract concentration of more than 1 g dry tissue/L (g $\textrm{L}^{-1}$). Hypocotyl growth, however, was not affected by all the concentrations of leaf extracts. Soil extracts from 4-yr-old alfalfa stand significantly reduced alfalfa root length by 66%, while soil extracts from 0,1, and 3yr-old stand stimulated root length up to 14-32% over the control. Residue incorporation with dry matters of alfalfa leaf at 100 g $\textrm{kg}^{-1}$ reduced seedling length of several crop and weed species, ranging from 53 to 87% inhibition. Addition of nutrient solution into alfalfa leaf extracts alleviated alfalfa autotoxic effect. This result indicates alfalfa leaf and soil extracts or residues could exert autotoxic as well as allelopathic substances into soil environments during and after establishment.

Effect of Several Cultivation Condition on Growth of Brachythecium rivulare and Myuroclada maximoviczii (몇 가지 재배조건이 물가양털이끼와 쥐꼬리이끼의 생육에 미치는 영향)

  • Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.52-59
    • /
    • 2013
  • This study was carried out to develop the proper cultivation methods of Brachythecium rivulare and Myuroclada maximowiczii which showed high-value for the interior landscaping and potting. Growth of two moss species cultivated in the compost covered with cloth was vigorous compared to that grown in containers only using cloth or compost, and their harvesting processes were easier. The growth and harvest easiness of mosses cultivated in compost were great rather than in bark or peatmoss. Compared to division, the spray of crushed mosses using mixer was effective for both gametophyte generation and their harvesting processes. In addition, the optimum inoculum for each container ($27{\times}17{\times}3cm$) was 2.0 g in B. rivulare and 4.0 g in M. maximowiczii. Overall growth of B. rivulare treated with nutrient solution (N:P:K=20:20:20) was inhibited compared to control, fresh-weight gain was reduced toward the higher concentration. But fresh-weight gain of M. maximowiczii was the highest with $0.25g{\cdot}L^{-1}$ treatment. Therefore, adequate moisture supply, after spraying crushed mosses (2.0 and 4.0 g each) in the compost covered with cloth, were the appropriate cultivation methods for B. rivulare and M. maximowiczii. Nutrient solution treatment with low concentration, during the cultivation period, would be the proper way only for M. maximowiczii.

Growth of Chrysanthemum Cultivars as Affected by Silicon Source and Application Method

  • Sivanesan, Iyyakkannu;Son, Moon Sook;Soundararajan, Prabhakaran;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.544-551
    • /
    • 2013
  • The effect of different silicon (Si) sources and methods of application on the growth of two chrysanthemum cultivars grown in a soilless substrate was investigated. Rooted terminal cuttings of Dendranthema grandiflorum 'Lemmon Eye' and 'Pink Eye' were transplanted into pots containing a coir-based substrate. A nutrient solution containing 0 or $50mg{\cdot}L^{-1}$ Si from calcium silicate ($CaSiO_3$), potassium silicate ($K_2SiO_3$) or sodium silicate ($Na_2SiO_3$) was supplied once a day through an ebb-and-flood sub irrigation system. A foliar spray of 0 or $50mg{\cdot}L^{-1}$ Si was applied twice a week. Cultivar and application method had a significant effect on plant height. Cultivar, application method, and Si source had a significant effect on plant width. Of the three Si sources studied, $K_2SiO_3$ was found to be the best for the increasing number of flowers, followed by $CaSiO_3$ and $Na_2SiO_3$. In both the cultivars, sub irrigational supply of Si developed necrotic lesions in the older leaves at the beginning of the flowering stage as compared to the control and foliar spray of Si. Cultivar, application method, Si source, and their interactions had significant influence on leaf tissue concentrations of calcium (Ca), potassium (K), phosphorus (P), magnesium (Mg), sulfur (S), sodium (Na), boron (B), iron (Fe), and zinc (Zn). The addition of Si to the nutrient solution decreased leaf tissue concentrations of Ca, Mg, S, Na, B, Cu, Fe, and Mn in both cultivars. The greatest Si concentration in leaf tissue was found in 'Lemmon Eye' ($1420{\mu}g{\cdot}g^{-1}$) and 'Pink Eye' ($1683{\mu}g{\cdot}g^{-1}$) when $K_2SiO_3$ was applied through a sub irrigation system and by foliar spray, respectively.

Effect of Silicon on Albinism of Strawberry in Elevated Hydroponic System (딸기의 고설수경재배에서 백납과 발생에 미치는 규소의 영향)

  • Jun, Ha-Joon;Hwang, Jin-Gyu;Son, Mi-Ja;Choi, Moon-Hwan;Yoon, Hae-Suk
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.322-326
    • /
    • 2006
  • This experiment has investigated the effects of silicon on albinism of strawberry. Albino fruit appeared after a month of treatment of potasium silicate(Si) in nutrient solution. When $200mL{\cdot}L^{-1}$ of Si applied, number of albino fruit increased over 90% of total amount of fruit, and the symptom remained latest any other treatment. The fruit length of the strawberries in Si treatments were longer than control treatment. However, the diameter and weight of fruit decreased in treatment of Si. The soluble solids of fruits, numbers of fruit and yield per plant were no significant differences among treatments. The rate of albino fruit was significantly increased with increase of concentration of Si. The results of this experiment will be utilized for the cultivation in the new substrate application for strawberry hydroponics.

Application Time of Irrigation Management by Drainage Level Sensor in Tomato Perlite Bag Culture (토마토 펄라이트 자루재배시 배액전극제어법 적용시점 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The experiment was implemented to introduce the drainage electrode irrigation system as early as possible after transplanting in order to save the nutrient solution in a convenient way. Drainage electrode irrigation method was introduced 15, 19 or 22 days after transplanting after irrigation was firstly controlled by time clock. Time clock method was also treated as a control plot. Drainage electrode method could be adopted from 15 days after transplanting, 15 days earlier than the present introducing time. The growth and yield was better in treatments with drainage electrode method. Water and fertilizer use efficiency were the highest in the treatment of 15 days, the lowest in time clock treatment.

Experiments of Rice Cultivation for Establishment of Total Nitrogen(T-N) Item of Agricultural Water Standards (농업용수 수질기준 T-N 항목 설정을 위한 벼생육 실험)

  • Choi, Sun-Hwa;Kim, Ho-il;Yoon, Kyung-Seup;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2004
  • The present water quality standards for agricultural were established without considering the effects of water quality on the safety, growth, yield and quality of crops. This study was carried out to investigate the effects of irrigation water quality on the growth, yield, and grain quality of rice, and to acquire basic knowledges to set up water quality standards for irrigation. The field and pot experiments were conducted with irrigation water that was previously adjusted four concentrations (control, 5, 10, 20 mg/L) and six concentrations (control, 5, 10, 15, 20, 30 mg/L) by $NH_4NO_3$ solution and replicated three and four times with randomized block design, respectively. The results of this study showed that the inorganic nutrient of rice plant, rice protein contents and number of panicle tended to increase as the T-N concentration in irrigation water was increased. In addition, grain yield at T-N 10 mg/L and 20mg/L were significantly higher than the control at the field experiment. From the pot experiment at T-N 30 mg/L, the percentage of head rice was slightly lower due to the increase of green kernel and white belly/core kernel.