References
- Audenaert, K., Pattery, T., Camelis, P. and Hofte, M. 2002. Indue-tion of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol. Plant-Microbe. Interact. 15: 147-1156
- Bolton, H. Jr., Elliott, L. F., Turco, R. F. and Kennedy, A. C. 1990. Rhizosphere colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas spp. and effects on plant growth. Plant Soil 123: 121-124 https://doi.org/10.1007/BF00009936
- Boer, M. de., Born, P., Frodo, K., Joost, J. B. K., Ientse, van der S., Van Loon, L. C. and Peter, A H. M. B. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626-632 https://doi.org/10.1094/PHYTO.2003.93.5.626
- Bucheuer, R. G. and Cox, C. D. 1988. Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyrochelin biosynthesis. J. Bacterol. 170: 5364-5367 https://doi.org/10.1128/jb.170.11.5364-5367.1988
- Buysens, S., Heungens, K, Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyroverdin in suppression of Pythium-induced damping-off tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865-871
- Chen, C., Richard, R. B., Benhamou, N. and Paulitz, T. C. 1999. Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum. Eur. J. PI. Pathol. 105: 477-486 https://doi.org/10.1023/A:1008743502784
- Chou, C. H. and Patrick, Z. A 1976. Identification and phytotoxic activity of compounds produced during decomposition of com and rye residues soil. J. Chem. Ecol. 2: 369-387 https://doi.org/10.1007/BF00988283
- Cox, C. D., Rinehart, K L., Moore, M. L. and Cook, J. K 1981. Pyochelin: Novel structure of an iron-chelating growth promoter of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 78: 4256-4260
- Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
- Hoagland, D. R. and Amon, D. I. 1938. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Bull. 347: 36-39
- Hoffland, E., Hakulinen, J. and Van Pelt, J. A. 1996. Comparison of systemic resistance induced by a virulent and nonpathogenic Pseudomonas species. Phytopathology 86: 757-762 https://doi.org/10.1094/Phyto-86-757
- Hofte, M., Mergeay, M. and Verstraete, W. 1990. Marking the rhizopseudomonas strain 7NSK2 with a Mu d (lac) element for ecological studies. Appl. Environ. Microbiol. 56: 1046-1052
- Hofte, M. 1993. Classes of microbial siderophores, pp. 3-6. In Barton, L. L. and Hemming, B.C. (eds.): Iron chelation in plants and soil microorganisms. Academic Press, San Diego
- Kloepper, J. W. 1992. Plant growth promoting rhizobacteria as biological control agents, pp. 142-152. In: Matting, B. (ed.): Soil microbial technologies. Marcel Dekker, New York
- Leeman, M., van Pelt, J. A, den Ouden, F. M., Heinsbroek, M., Bakker, P. A H. M. and Schippers, B. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharide of Pseudomonas fluorescens. Phytopathology 85: 1021-1027 https://doi.org/10.1094/Phyto-85-1021
- Leeman, M., den Ouden, F. M., van Pelt, J. A, Dirkx, F. P. M., Steijl, H. Bakker, P. A H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonasfluorescens. Phytopathology 86: 149-155 https://doi.org/10.1094/Phyto-86-149
- Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
- Liu, L., Kloepper, J. W. and Tuzum, S. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85: 1064-1068 https://doi.org/10.1094/Phyto-85-1064
- Meena, B., Ramamoorthy, V., Marimuthu, T. and Velazhahan, R. 2000. Pseudomonas fluorescens mediated systemic resistance against late leaf spot of groundnut. J. Mycol. PI. Pathol. 30: 151-158
- Meena, B., Marimuthu, T. and Velazhahan, R. 2001. Salicylic acid induced resistance in Groundnut against late leaf spot caused by Cercosporidium personatum. J. Mycol. Pl. Pathol. 31: 139-145
- Meyer, G. D. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induced resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 587-593
- Pareek, R. P. and Gour, A C. 1973. Organic acids in the rhizosphere of Zea mays and Phaseolus aureus plants. Plant Soil 39: 441-444 https://doi.org/10.1007/BF00014812
- Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E. and Van Pelt, J. A 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237 https://doi.org/10.1105/tpc.8.8.1225
- Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598 https://doi.org/10.1094/PHYTO.2001.91.6.593
- Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997: Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe. Interact. 10: 761-768 https://doi.org/10.1094/MPMI.1997.10.6.761
- Raaijmakers, J. M., Bitter, W., Punte, H. L. M., Bakker, P. A. H. M., Weisbeek, P. J. and Schippers, B. 1994. Siderophore-receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl. Environ. Microbiol. 60: 1184-1190
- Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819 https://doi.org/10.1105/tpc.8.10.1809
- Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158: 203-213 https://doi.org/10.1078/0944-5013-00202
- Siddiqui, I. A and Shaukat, S. S. 2004. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152: 48-54 https://doi.org/10.1046/j.1439-0434.2003.00800.x
- Srivastava, Alok. K., Singh, Tanuja, Jana, T. K. and Arora, D. K. 2001. Induced resistance and charcoal rot in Ciceri arietinum (chickpea) by Pseudomonas fluorescens. Can. J. Bot. 79: 787-795 https://doi.org/10.1139/cjb-79-7-787
- van Loon, L. C., Bakker, P. A H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453-485 https://doi.org/10.1146/annurev.phyto.36.1.453
- Vise, P., Ciervo, A., Sanfilippo, V. and Orsi, N. 1993: Iron-regulated salicylate synthesis by Pseudomonas spp. J. Gen. Microbiol. 139: 1995-2001 https://doi.org/10.1099/00221287-139-9-1995
- Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis - related proteins in virus-infected tobacco. Plant Cell 3: 809-818 https://doi.org/10.1105/tpc.3.8.809
- Yeole, R. D. and Dube, H. C. 1997. Increased plant growth and yield through seed bacterization. Indian Phytopathol. 50: 316
Cited by
- Genetic and Functional Diversity Among the Antagonistic Potential Fluorescent Pseudomonads Isolated from Tea Rhizosphere vol.62, pp.2, 2011, https://doi.org/10.1007/s00284-010-9726-y
- Rhizobacterial salicylate production provokes headaches! vol.382, pp.1-2, 2014, https://doi.org/10.1007/s11104-014-2102-0