DOI QR코드

DOI QR Code

Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

  • Saikia, Ratul (National Bureau of Agriculturally Important Microorganisms (NBAIM)) ;
  • Srivastava, Alok K. (Laboratory of Microbial Biotechnology, P G Department of Botany, SMMT P G College) ;
  • Singh, Kiran (Department of Microbiology, Barkatullah University) ;
  • Arora, Dilip K. (National Bureau of Agriculturally Important Microorganisms (NBAIM)) ;
  • Lee, Min-Woong (Department of Agrobiology, Dongguk University)
  • Published : 2005.03.30

Abstract

Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that an the bacterial isolates produced more salicylic acid (SA) at low iron ($10\;{\mu}M$ EDDHA) than high iron availability ($10\;{\mu}Fe^{3+}$ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

Keywords

References

  1. Audenaert, K., Pattery, T., Camelis, P. and Hofte, M. 2002. Indue-tion of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol. Plant-Microbe. Interact. 15: 147-1156
  2. Bolton, H. Jr., Elliott, L. F., Turco, R. F. and Kennedy, A. C. 1990. Rhizosphere colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas spp. and effects on plant growth. Plant Soil 123: 121-124 https://doi.org/10.1007/BF00009936
  3. Boer, M. de., Born, P., Frodo, K., Joost, J. B. K., Ientse, van der S., Van Loon, L. C. and Peter, A H. M. B. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626-632 https://doi.org/10.1094/PHYTO.2003.93.5.626
  4. Bucheuer, R. G. and Cox, C. D. 1988. Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyrochelin biosynthesis. J. Bacterol. 170: 5364-5367 https://doi.org/10.1128/jb.170.11.5364-5367.1988
  5. Buysens, S., Heungens, K, Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyroverdin in suppression of Pythium-induced damping-off tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865-871
  6. Chen, C., Richard, R. B., Benhamou, N. and Paulitz, T. C. 1999. Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum. Eur. J. PI. Pathol. 105: 477-486 https://doi.org/10.1023/A:1008743502784
  7. Chou, C. H. and Patrick, Z. A 1976. Identification and phytotoxic activity of compounds produced during decomposition of com and rye residues soil. J. Chem. Ecol. 2: 369-387 https://doi.org/10.1007/BF00988283
  8. Cox, C. D., Rinehart, K L., Moore, M. L. and Cook, J. K 1981. Pyochelin: Novel structure of an iron-chelating growth promoter of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 78: 4256-4260
  9. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  10. Hoagland, D. R. and Amon, D. I. 1938. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Bull. 347: 36-39
  11. Hoffland, E., Hakulinen, J. and Van Pelt, J. A. 1996. Comparison of systemic resistance induced by a virulent and nonpathogenic Pseudomonas species. Phytopathology 86: 757-762 https://doi.org/10.1094/Phyto-86-757
  12. Hofte, M., Mergeay, M. and Verstraete, W. 1990. Marking the rhizopseudomonas strain 7NSK2 with a Mu d (lac) element for ecological studies. Appl. Environ. Microbiol. 56: 1046-1052
  13. Hofte, M. 1993. Classes of microbial siderophores, pp. 3-6. In Barton, L. L. and Hemming, B.C. (eds.): Iron chelation in plants and soil microorganisms. Academic Press, San Diego
  14. Kloepper, J. W. 1992. Plant growth promoting rhizobacteria as biological control agents, pp. 142-152. In: Matting, B. (ed.): Soil microbial technologies. Marcel Dekker, New York
  15. Leeman, M., van Pelt, J. A, den Ouden, F. M., Heinsbroek, M., Bakker, P. A H. M. and Schippers, B. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharide of Pseudomonas fluorescens. Phytopathology 85: 1021-1027 https://doi.org/10.1094/Phyto-85-1021
  16. Leeman, M., den Ouden, F. M., van Pelt, J. A, Dirkx, F. P. M., Steijl, H. Bakker, P. A H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonasfluorescens. Phytopathology 86: 149-155 https://doi.org/10.1094/Phyto-86-149
  17. Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
  18. Liu, L., Kloepper, J. W. and Tuzum, S. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85: 1064-1068 https://doi.org/10.1094/Phyto-85-1064
  19. Meena, B., Ramamoorthy, V., Marimuthu, T. and Velazhahan, R. 2000. Pseudomonas fluorescens mediated systemic resistance against late leaf spot of groundnut. J. Mycol. PI. Pathol. 30: 151-158
  20. Meena, B., Marimuthu, T. and Velazhahan, R. 2001. Salicylic acid induced resistance in Groundnut against late leaf spot caused by Cercosporidium personatum. J. Mycol. Pl. Pathol. 31: 139-145
  21. Meyer, G. D. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induced resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 587-593
  22. Pareek, R. P. and Gour, A C. 1973. Organic acids in the rhizosphere of Zea mays and Phaseolus aureus plants. Plant Soil 39: 441-444 https://doi.org/10.1007/BF00014812
  23. Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E. and Van Pelt, J. A 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  24. Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598 https://doi.org/10.1094/PHYTO.2001.91.6.593
  25. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997: Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe. Interact. 10: 761-768 https://doi.org/10.1094/MPMI.1997.10.6.761
  26. Raaijmakers, J. M., Bitter, W., Punte, H. L. M., Bakker, P. A. H. M., Weisbeek, P. J. and Schippers, B. 1994. Siderophore-receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl. Environ. Microbiol. 60: 1184-1190
  27. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  28. Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158: 203-213 https://doi.org/10.1078/0944-5013-00202
  29. Siddiqui, I. A and Shaukat, S. S. 2004. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152: 48-54 https://doi.org/10.1046/j.1439-0434.2003.00800.x
  30. Srivastava, Alok. K., Singh, Tanuja, Jana, T. K. and Arora, D. K. 2001. Induced resistance and charcoal rot in Ciceri arietinum (chickpea) by Pseudomonas fluorescens. Can. J. Bot. 79: 787-795 https://doi.org/10.1139/cjb-79-7-787
  31. van Loon, L. C., Bakker, P. A H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453-485 https://doi.org/10.1146/annurev.phyto.36.1.453
  32. Vise, P., Ciervo, A., Sanfilippo, V. and Orsi, N. 1993: Iron-regulated salicylate synthesis by Pseudomonas spp. J. Gen. Microbiol. 139: 1995-2001 https://doi.org/10.1099/00221287-139-9-1995
  33. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis - related proteins in virus-infected tobacco. Plant Cell 3: 809-818 https://doi.org/10.1105/tpc.3.8.809
  34. Yeole, R. D. and Dube, H. C. 1997. Increased plant growth and yield through seed bacterization. Indian Phytopathol. 50: 316

Cited by

  1. Genetic and Functional Diversity Among the Antagonistic Potential Fluorescent Pseudomonads Isolated from Tea Rhizosphere vol.62, pp.2, 2011, https://doi.org/10.1007/s00284-010-9726-y
  2. Rhizobacterial salicylate production provokes headaches! vol.382, pp.1-2, 2014, https://doi.org/10.1007/s11104-014-2102-0