• Title/Summary/Keyword: numerical solutions

Search Result 2,424, Processing Time 0.027 seconds

The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas ($SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구)

  • 김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF

Middle School Students' Understanding and Development of Function Graphs (중학생들의 함수의 그래프에 대한 이해와 발달)

  • Ma, Minyoung;Shin, Jaehong;Lee, SooJin;Park, JongHee
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.457-478
    • /
    • 2016
  • The purpose of this study is to investigate middle school students' understanding and development of function graphs. We collected the data from the teaching experiment with two middle school students who had not yet received instruction on linear function in school. The students participated in a 15-day teaching experiment(Steffe, & Thompson, 2000). Each teaching episode lasted one or two hours. The students initially focused on numerical values rather than the overall relationship between the variables in functional situations. This study described meaning, role of and students' responses for the given tasks, which revealed the students' understanding and development of function graphs. Especially we analyzed students' responses based on their methods to solve the tasks, reasoning that derived from those methods, and their solutions. The results indicate that their continuous reasoning played a significant role in their understanding of function graphs.

Back Analysis for the Properties of Cut and Cover Tunnel using Optimization Algorithms (최적화 알고리즘을 이용한 복개터널 물성값의 역해석)

  • Park, Byung-Soo;Jun, Sang-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2008
  • This study is about the back analysis to optimize the uncertain parameters of geotechnical properties used in stability analysis of cut and cover tunnel. The Simplex algorithm, Powell algorithm, Rosenbrock algorithm, and Levenberg-Marquardt algorithm are applied for artificial problems of ground excavation. Furthermore, results are compared in the matter of the reliability of optimal solutions with a certain accuracy and the computation speed for evaluations of variables. As shown in results of numerical analysis, all of four algorithms are converged to exact solution satisfying the allowable criteria. And Levenberg-Marquardt's and Rosenbrock's algorithms are identified to be the more efficient methods in the evaluations of functions. After the back analysis for Poisson ratio and Young's modulus for cut and cover tunnel has been performed, design parameters have been correctly estimated and computation time has been improved while the number of measure points is increased.

Numerical modeling of explosions and earthquakes from North Korea (북한의 폭파자료와 자연지진에 대한 수치 모델링)

  • Cho, Kwang-Hyun;Kang, Ik-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.249-252
    • /
    • 2008
  • The solutions are expressed in terms of a double integral transformation over wavenumber and frequency. The complete solution is considered in such a full wave theory approach. This method can handle a larger number of plane layers. Therefore, the result of FK method is very similar to real data. Using the models that were modified in velocity and Q value with depth by iterative process from a model (Kang and Park, 2006) and considered as one of the best models in Korean Peninsula, the synthetic data are simulated for explosions and earthquakes of North Korea. This study notes that the wave shape of the synthetic data is very dependent on Q value, velocities, and thickness of sedimentary layers. Comparing between the real and the synthetic, fitting well in arrival time of first arrival and wave shape causes us to arrive at an indication that the model is very close representation of upper crustal structure and simulations are well done in amplitude fitting and in identification of phases of local and regional waves.

  • PDF

A Simple Modification of the First-order Shear Deformation Theory for the Analysis of Composite Laminated Structures (복합적층구조해석을 위한 1차전단변형이론의 간단한 수정방안)

  • Chun, Kyoung-Sik;Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.475-481
    • /
    • 2011
  • In this study, a simplified method of improving not only transverse shear stress but also shear strain based on the first-order shear deformation theory was developed. Unlike many established methods, such as the higher-order shear deformation and layerwise theories, this method can easily apply to finite elements as only $C^0$ continuity is necessary and the formulation of equations is very simple. The basic concept in this method, however, must be corrected:the distribution of the transverse shear stresses and shear strains through the thickness from the formulation based on the higher-order shear deformation theory. Therefore, the shear correction factors are no longer required, based on the first-order shear deformation theory. Numerical analyses were conducted to verify the validity of the proposed formulations. The solutions based on the simplified method were in very good agreement with the results considering the higher-order shear deformation theory.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

Combined Adjustment of Photogrammetric and Geodetic Observations for Accuracy Improvement (사진측량의 정확도향상을 위한 사진 및 측지관측값의 결합조정)

  • Jung, Young-Dong;Kang, Tae-Suck;Kwon, Hyon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.35-43
    • /
    • 1989
  • The improvements of highly accurate and dense control networks are major requirements to carry out numerical surveying and a large scale mapping for cadastral renovation. In the most conventional photogrammetric solutions, adjusted control coordinates have been applied to block triangulations. However, this study, imploying real data and those of simulated as well, contributes to a simultaneously combined adjustment. It also contains such photogrammetric as photocoordinates and geodetic observations like distances, angles and hight differences. Its purpose is to introduce the improved results, despite it is not sufficient for the ground network. In addition, through the detection of gross error, more precise observational data can be selected for the better adjustment. All in all, the result of this study can be summarized as follows : First, even if the ground control points are not sufficient nor existed at all, the combination of pbotogrammetric and geodetic observations are improved its accuracy. Secondly, the case #2 is more accurate than that of #3, and the case #7 comes into close to that of #6.

  • PDF

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates

  • Abbas, Soufiane;Benguediab, Soumia;Draiche, Kada;Bakora, Ahmed;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.365-380
    • /
    • 2020
  • The focus of this paper is to develop an analytical approach based on an efficient shear deformation theory with stretching effect for bending stress analysis of cross-ply laminated composite plates subjected to transverse parabolic load and line load by using a new kinematic model, in which the axial displacements involve an undetermined integral component in order to reduce the number of unknowns and a sinusoidal function in terms of the thickness coordinate to include the effect of transverse shear deformation. The present theory contains only five unknowns and satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without using any shear correction factors. The governing differential equations and its boundary conditions are derived by employing the static version of principle of virtual work. Closed-form solutions for simply supported cross-ply laminated plates are obtained applying Navier's solution technique, and the numerical case studies are compared with the theoretical results to verify the utility of the proposed model. Lastly, it can be seen that the present outlined theory is more accurate and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated composite plates.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.