References
- 교육부(2015). 수학과 교육과정. 교육부 고시 제2015-74호 [별책 8].
- 마민영.신재홍(2016). 대수 문장제의 해결에서 드러나는 중등 영재 학생간의 공변추론 수준 비교 및 분석. 학교수학, 18(1), 43-59.
- 박선화.변희현.주미경(2011). 중학교 학생의 수학과 학습 특성 연구. 한국교육과정평가원연구보고 RRI 2011-5.
- 손홍찬.류희찬(2005). 함수 지도와 수학적 모델링 활동에서 스프레드시트의 활용. 수학교육학연구, 15(4), 505-522.
- 안가영.권오남(2002). 함수 그래프 과제에서의 오류분석 및 처치. 한국수학교육학회지 수학교육논문집, 13(1). 337-360.
- 이광상.조민식.류희찬(2006). 엑셀의 활용이 일차함수 문제해결에 미치는 효과. 학교수학, 8(3), 265-290.
- 이종희.김부미(2003). 교수학적 처방에 따른 중학생들의 일차함수 오개념의 변화와 그 효과 분석. 학교수학, 5(1), 115-133.
- 이화영.류현아.장경윤(2009). 함수의 그래프 표현 및 그래프 해석 지도 가능성 탐색. 학교수학, 11(1), 131-145.
- 황혜정.나귀수.최승현.박경미.임재훈(2016). 수학교육학신론. 서울: 문음사.
- Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
- Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. Mayes & L. L. Hatfield(Eds.), Quantitative reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context (Vol. 2, pp. 55-73). Laramie, WY: University of Wyoming College of Education.
- Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationship through quantitative reasoning. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp.215-238). Springer-Verlag Berlin Heidelberg.
- Ellis, A. B., Ozgur, Z., Kulow, T., Williams, C., & Amidon, J. (2012). Quantifying exponential growth: The case of the jactus. In R. Mayes & L. L. Hatfield (Eds.), Quantitative Reasoning and Mathematical Modeling: A Driver for STEM Integrated Education and Teaching in Context (Vol. 2, pp. 93-112). Laramie: University of Wyoming.
- Hackenberg, A. J. (2009). Relationships between students' fraction knowledge and equation solving. Paper presentation at the Research Pre-session of the annual conference of the National Council of Teachers of Mathematics, Washington, D.C.
- Lobato, J. & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal of Mathematical Behavior, 21(1), 87-116. https://doi.org/10.1016/S0732-3123(02)00105-0
- Monk, S. (1992). Students' understanding of a function given by a physical model. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 175-193). Washington, DC: Mathematical Association of America.
- Moore, K. C., & Thompson, P. W. (2015). Shape thinking and students' graphing activity. In T. Fukawa-Connelly, N. E. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th Meeting of the MAA Special Interest Group on Research in Undergraduate Mathematics Education (pp. 782-789). Pittsburgh, PA: RUME.
- Norton, A., & D'Ambrosio, B. (2008). ZPC and ZPD: Zones of teaching and learning. Journal for Research in Mathematics Education, 39(3), 220-246.
- Oehrtman, M.C., Carlson, M.P., & Thompson, P.W., (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. In M. P. Carlson & C. Rasmussem (Eds.), Making the connection: Research and practice in undergraduate mathematics (pp. 27-42). Washington, DC: Mathematical Association of America.
- Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177-194). New York: Kluwer Academic Publishers.
- Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.