• 제목/요약/키워드: numerical radius

검색결과 616건 처리시간 0.024초

비틀림 및 횡압럭을 받고 있는 복합재 원통쉘의 좌굴 (Buckling of Composite Cylindrical Shells Sugjected ot Torsion of Lateral Pressure)

  • 한병기;이성희;유택인
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1436-1444
    • /
    • 1996
  • The problem ofinstability of laminated circular cylindrical shell under the action of torsio or lateral pressure is investigated. The analysis is based on the Sander's theory for finite deformations of thin shell. The buckling is elastic for thin compoisite shell nad the geometry is assumed to be free of initial imperfections. The equilibrium equations are obrained by usitn the p[erturbation technique. Solution procedure is based on the Galerkin mehtod. The computer program for numerical results is made for several stacking sequence, length-to-radius ratio, and radius-to-thickness ratio. The numerical results of buckling load are present.

P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석 (A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF

익형의 형상최적화를 통한 고효율 축류송풍기 설계 (High-Efficiency Design of Axial Flow Fan through Shape Optimization of Airfoil)

  • 이기상;김광용;최재호
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.46-54
    • /
    • 2008
  • This study presents a numerical optimization to optimize an axial flow fan blade to increase the efficiency. The radial basis neural network is used as an optimization method with the numerical analysis by Reynolds-averaged Navier-Stokes equations using SST model as turbulence closure. Four design variables related to airfoil maximum camber, maximum camber location, leading edge radius and trailing edge radius, respectively, are selected, and efficiency is considered as objective function which is to be maximized. Thirty designs are evaluated to get the objective function values of each design used to train the neural network. Optimum shape shows the efficiency increased by 1.0%.

Wolf-Rayet star evolution with clumpy envelope structure

  • Jang, Hye-Eun;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.42.2-42.2
    • /
    • 2016
  • It is well known that theoretical models of Wolf-Rayet stars are not consistent with observational data in terms of temperature and stellar radius. Recent study in analytical and numerical simulations show the importance of density inhomogeneity in stellar envelope. Using 1-dimensional numerical simulations, we study how such clumpiness arisen over convective surface of Wolf-Rayet stars affect their evolutionary path. Starting from pure helium star models, we constructed 21 different initial conditions by varying stellar mass, metallicity, and the clumpiness of the sub-surface convection zone. We run the simulations until the oxygen-burning is reached and find that the influence of the clumpiness is sensitive to the initial metallicity. Our models with high metallicity including the effect of the density inhomogeneity can roughly explain the observed properties of Wolf-Rayet stars such as stellar radius and temperature. By contrast, despite a considerable amount of density inhomogeneity is given, low metallicity models could not fully explain observations. To understand the inconsistency in low metallicity models, detailed study with improved model is required, taking account of the error range of the observations.

  • PDF

FUNCTIONS ATTAINING THE SUPREMUM AND ISOMORPHIC PROPERTIES OF A BANACH SPACE

  • D. Acosta, Maria ;Becerra Guerrero, Julio ;Ruiz Galan, Manuel
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2004
  • We prove that a Banach space that is convex-transitive and such that for some element u in the unit sphere, and for every subspace Μ containing u, it happens that the subset of norm attaining functionals on Μ is second Baire category in $M^{*}$ is, in fact, almost-transitive and superreflexive. We also obtain a characterization of finite-dimensional spaces in terms of functions that attain their supremum: a Banach space is finite-dimensional if, for every equivalent norm, every rank-one operator attains its numerical radius. Finally, we describe the subset of norm attaining functionals on a space isomorphic to $\ell$$_1$, where the norm is the restriction of a Luxembourg norm on $L_1$. In fact, the subset of norm attaining functionals for this norm coincides with the subset of norm attaining functionals for the usual norm.m.

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

터널 지하수 유출량 산정을 위한 수치모델 (Numerical Simulation of Groundwater Discharge Into a Tunnel)

  • 정재현;구민호
    • 지질공학
    • /
    • 제25권3호
    • /
    • pp.369-376
    • /
    • 2015
  • 최근 국내에서 터널 내 지하수 유출량 산정을 위해 MODFLOW와 같은 지하수 수치모델이 많이 이용되고 있다. 수치 모델의 경우 격자망 설계가 터널 유출량 산정 결과에 큰 영향을 주는 것으로 알려져 있으나, 모델 설계 시 명확한 기준없이 연구자에 따라 임의의 크기로 격자망이 설정되어 왔다. 따라서 본 논문에서는 해석해와 수치해를 비교하는 방법을 통하여 격자의 크기가 수치모델의 유출량 산정 오차에 미치는 영향을 분석하였으며, 최적의 격자망 설정 방법을 제시하였다. 해석해와 수치해의 불일치는 부적절한 격자망 설정뿐만 아니라 모델 영역의 경계 효과에 의해서도 발생하는 것으로 나타났다. 따라서 수치모델의 경계 효과 성분을 제거한 후 격자의 크기가 터널 유출량 산정 오차에 미치는 영향을 분석하였으며, 결론적으로 정확한 유출량 산정 결과를 나타내는 터널 크기와 격자 크기의 관계식을 도출하였다. 도출된 관계식은 유한차분 수치모델에서 등가우물격자반경과 격자 크기와의 관계식과 동일한 것으로 나타났다.

화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구 (A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate)

  • 김경호;김태권;박정;하지수
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.47-56
    • /
    • 2011
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율 및 삼지화염의 화염전파속도에 관한 직접적인 관계에 관하여 제시된 바가 없었다. 본 논문은 실험과 수치해석에 따른 수치해석 결과를 검증하고, 수치해석을 통해 스칼라소산율에 따른 화염전파속도를 확인하였다. 그리고 화염스트레치 분석을 통하여 화염전파속도의 곡률반경 및 스칼라소산율에 따른 의존도를 명확히 하였다.

쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구 (A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process)

  • 김효찬;이상호;박승교;양동열
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.177-186
    • /
    • 2006
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience due to cleaning process. Therefore, a new rapid manufacturing process, Rapid Heat Ablation process (RHA) using the hot tool, has been developed. In this paper, the hot tool for RHA process is designed to minimize radius of heat affected zone. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. In order to verify the numerical results, surface temperature of the hot tool is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. The practicality and effectiveness of the designed hot tool have been verified through experiments.

환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구 (A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli)

  • 서병택;장영근;김덕주
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.