• Title/Summary/Keyword: numerical evaluation

Search Result 2,640, Processing Time 0.029 seconds

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments (개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석)

  • Jung, Duhwoe;Jeong, Sidong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.13-22
    • /
    • 2021
  • Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Application of Slip-line Method to the Evaluation of Plastic Zone around a Circular Tunnel (원형터널 주변의 소성영역 평가를 위한 slip-line 해석법 활용)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.312-326
    • /
    • 2022
  • The generalized Hoek-Brown (GHB) criterion, which is recognized as one of the standard failure conditions for rock mass, is specialized for rock engineering applications and covers a wide range of rock mass conditions. Accordingly, many research efforts have been devoted to the incorporation of this criterion into the stability analysis of rock structures. In this study, the slip-line analysis method, which is a kind of elastoplastic analysis method, is combined with the GHB failure criterion to derive analytical equations that can easily calculate the plastic radius and stress distribution in the vicinity of the circular tunnel. In the process of derivation of related formulas, it is assumed that the behavior of rock mass after failure is perfectly plastic and the in-situ stress condition is hydrostatic. In the formulation, it is revealed that the plastic radius can be calculated analytically using the two respective tangential friction angles corresponding to the stress conditions at tunnel wall and elastic-plastic boundary. It is also shown that the plastic radius and stress distribution calculated using the derived analytical equations coincide with the results of Lee & Pietruszczak's numerical method published in 2008. In the latter part of this paper, the influence of the quality of the rock mass on the size of the plastic zone, the stress distribution, and the change of the tangential friction angle was investigated using the derived analytical equations.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Effect of Intensively Complex Physical Therapy Program on Pain, Range of Motion and Muscle Function in Traumatic Low Back pain: A preliminary study (집중 복합 물리치료 프로그램이 외상성 요통 환자의 통증, 관절가동범위와 근기능에 미치는 영향: 예비연구)

  • Young-Hyeon, Bae;Moon-Ju, Ko;Young-Bum, Kim;Sung Shin, Kim;Kyung-Ju, Seo; Chan, Park;Sun-Mi, Kim;Joon-Kyung, Choi
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.4
    • /
    • pp.75-85
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effect of intensively complex physical therapy program on pain, range of motion (ROM) and muscle function in traumatic low back injury by industrial accident. Design: Prospective study Methods: Eight patients with traumatic low back injury by industrial accident participated in this study. They were treated the intensively complex physical therapy program including daily 60 minutes therapist supervised physical therapy at 5 times a week and 30 minutes manual therapy at 5 times a week in 12 weeks. Evaluation was performed before the commencement of the training and again 4, 8 and 12 weeks. There were measured Numerical Rating Scale (NRS) for evaluating pain, ROM of trunk, and isometric muscle strength of trunk, core muscle endurance, neuromuscular control ability for evaluating muscle function. Results: NRS was significantly improved according to time (p<0.05). ROM of extension and rotation, isometric muscle strength of trunk and hip, core muscle endurance and neuromuscular control ability were significantly improved according to time (p<0.05). Conclusion: We could confirm the superiority effect of intensively complex physical therapy program on pain, ROM of trunk and muscle function in traumatic low back pain with industrial accident.

Fully Coupled Seismic Analysis of Stress-Flow According to Tunnel Drainage Type (터널 배수 형식에 따른 응력-침투 연계 내진해석)

  • Byoung-Il Choi;Myung-Ho Ha;Dong-Ha Lee;Eun-Cheol Noh;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.94-103
    • /
    • 2023
  • Built in urban ares tunnels is necessary to accurately grasp not only the above-ground environment of the tunnel but also the below-ground environment of the tunnel for design and construct. However, fully coupled analysis of stress and flow is very difficult due to the limited function of the tunnel numerical analysis program and difficulty in using program. This can lead to excessive design that increases the construction cost or occur problems that can lead to accidents during construction. In particular, in the case of an urban tunnel has a low layer soil section above the tunnel and the groundwater level exists in the upper layer of the tunnel. Therefore, a reduction in the groundwater level during underground construction may increase the effective stress of the upper layer and cause the ground to subsidence. So It is necessary to design after accurately evaluating the change in the groundwater level. In this study, the tunnel's behavioral characteristics were analyzed through fully coupled analysis of stress and flow according to the drainage type for an urban underground tunnel.

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.