DOI QR코드

DOI QR Code

격자볼츠만기법을 이용한 선박 파이프내 유동소음해석

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method

  • 조범진 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학과)
  • Beom-Jin Joe (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Suk-Yoon Hong (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Jee-Hun Song (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • 투고 : 2023.08.07
  • 심사 : 2023.08.29
  • 발행 : 2023.08.31

초록

소음공해는 인간과 해양환경에 악영향을 끼치며, 선박과 해양구조물에서 발생하는 유동소음을 예측을 통해 소음에 대한 안전성을 평가하고 해양환경을 보존할 수 있다. 기존 수중구조 유동소음 해석기법은 전산유체역학과 FW-H음향상사식을 이용한 하이브리드법 기반이다. FW-H는 무한공간에서의 음향전파를 가정하여 소음해석을 수행하기 때문에 음파의 반사와 산란, 회절의 영향이 나타나는 근접장 해석이 제한적이다. 반면 격자볼츠만기법 기반의 직접법 유동소음해석을 수행하면 근접장 음향효과를 소음해석에 반영할 수 있다. 직접법 해석은 유동과 소음이 연성된 해석이 수행되고 구조경계에서의 반사와 회절, 유동에 의한 매질 불균일성에 따른 산란효과가 반영된다. 그간 격자볼츠만기법이 수중조건에서 수치적으로 불안정하여 수중환경에 적용이 불가능했다. 하지만 수중환경에서 사용할 수 있는 DM-TS 격자볼츠만기법 충돌연산자가 개발되어 수중으로 확장이 가능해졌다. 본 연구에서는 파이프내 원형구멍에 대하여 격자볼츠만기법 해석을 수행해 수중 유동소음해석이 가능함을 보였다. 격자볼츠만기법 해석을 통해 도출한 유동과 소음을 각각 실험과 비교하여 해석의 신뢰도를 확보하였다. 파이프내 유동소음에 의한 주요 압력 피크가 해석에 반영되었으며 이를 통해 격자볼츠만기법을 이용한 근접장 유동소음해석이 가능함을 확인했다.

Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

키워드

과제정보

본 연구는 서울대학교 BK21 친환경 디지털 조선해양 교육연구단의 지원을 받아 수행하였습니다. 또한, 해양시스템 공학연구소(RIMSE)와 연구재단(2021R1F1A1059914), 서울대학교 공학연구원의 지원을 받아 수행하였습니다.

참고문헌

  1. Casalino, D., A. Hazir, and A. Mann(2018), Turbofan broadband noise prediction using the lattice Boltzmann method, AIAA Journal, Vol. 56 No. 2, pp. 609-628. https://doi.org/10.2514/1.J055674
  2. Ebrahimi, A., A. Tootian, and M. S. Sief(2023), The effect of different endplate geometries on the hydrodynamic and acoustic performance of the tip-loaded propeller, Ocean Engineering, Vol. 272, 113885.
  3. Ezzatneshan, E.(2019), Comparative study of the lattice Boltzmann collision models for simulation of incompressible fluid flows, Mathematics and Computers in Simulation, Vol. 156, pp. 158-177. https://doi.org/10.1016/j.matcom.2018.07.013
  4. Huang, Z. H., Y. G. Cheng, J. Y. Wu, W. Diao, and W. X. Huai(2022), FSI simulation of dynamics of fish passing through a tubular turbine based on the immersed boundary-lattice Boltzmann coupling scheme, Journal of Hydrodynamics, Vol. 34, No. 1, pp. 135-147. https://doi.org/10.1007/s42241-022-0014-7
  5. Joe, B. J., S. J. Yeo, S. Y. Hong, and J. H. Song(2023), Stable LBM schemes for acoustic scaling simulations under high Reynolds to Mach ratio: Introduction to the DM-TS operator, Computers & Mathematics with Applications, Vol. 145, pp. 1-12. https://doi.org/10.1016/j.camwa.2023.06.002
  6. Kim, I. Y., D. G. Yoon, J. Y. Jeong, S. H. Kim, and D. H. You(2023), Domain reduction strategy for large-eddy simulation to predict underwater radiated noise from a marine propeller, Ocean Engineering, Vol. 279, 114538.
  7. Kim, S. N. and S. A. Kinnas(2022), Numerical prediction of underwater noise on a flat hull induced by twin or podded propeller systems, Journal of Sound and Vibration, Vol. 539, 117256.
  8. Kottapalli, S., A. Hirschberg, V. Anantharaman, D. M. Smeulders, N. Waterson, and G. Nakiboglu(2022), Hydrodynamic and acoustic pressure fluctuations in water pipes due to an orifice: Comparison of measurements with large eddy simulations, Journal of Sound and Vibration, Vol. 529, 116882.
  9. Kruger, T., H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen(2017), The lattice Boltzmann method, Springer International Publishing, pp. 62-66.
  10. Kusano, K., K. Yamada, and M. Furukawa(2020), Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method, Journal of Sound and Vibration, Vol. 467, 115044.
  11. Maaloum, A., S. Kouidri, and R. Rey(2004), Aeroacoustic performance evaluation of axial flow fans based on the unsteady pressure field on the blade surface, Applied Acoustics, Vol. 65, No. 4, pp. 367-384.
  12. Marie, S., D. Ricot, and P. Sagaut(2009), Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, Journal of Computational Physics, Vol. 228, No. 4, pp. 1056-1070. https://doi.org/10.1016/j.jcp.2008.10.021
  13. Moreau, S.(2019), Direct noise computation of low-speed ring fans, Acta Acustica united with Acustica, Vol. 105, No. 1, pp. 30-42. https://doi.org/10.3813/AAA.919285
  14. Petris, G., M. Cianferra, and V. Armenio(2022), Marine propeller noise propagation within bounded domains, Ocean Engineering, Vol. 265, 112618.
  15. Sanjose, M., M. Daroukh, W. Magnet, J. De Laborderie, S. Moreau, and A. Mann(2015), Tonal fan noise prediction and validation on the ANCF configuration, Noise Control Engineering Journal, Vol. 63, No. 6, pp. 552-561.
  16. Yeo, S. J., S. Y. Hong, J. H. Song, H. W. Kwon, and H. S. Seol(2018), Flow-induced noise prediction for submarines, Journal of the Korean Society of Marine Environment & Safety, Vol. 24, No. 7, pp. 930-938. https://doi.org/10.7837/kosomes.2018.24.7.930
  17. Yeo, S. J., S. Y. Hong, J. H. Song, and H. W. Kwon(2020), Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method, Journal of the Korean Society of Marine Environment & Safety, Vol. 26, No. 6, pp. 742-750. https://doi.org/10.7837/kosomes.2020.26.6.742
  18. Yu, K. H., D. J. Park, J. H. Choi, H. S. Seol, I. Y. Park, and S. Lee(2023), Effect of skew on the tonal noise characteristics of a full-scale submarine propeller, Ocean Engineering, Vol. 276, 114218.