DOI QR코드

DOI QR Code

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments

개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석

  • Jung, Duhwoe (Department of Civil Eng., Pukyong National University) ;
  • Jeong, Sidong (Department of Civil Eng., Pukyong National University)
  • Received : 2021.04.13
  • Accepted : 2021.05.11
  • Published : 2021.06.30

Abstract

Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

최근 연약지반에 도로 또는 철도 제방을 축조하는 경우 말뚝 또는 개량체 기둥을 연약지반에 설치한 후에 성토하는 말뚝(또는 기둥)지지 성토공법이 많이 적용되고 있다. 이 공법은 지반아칭 현상을 이용해서 제방하중의 상당한 부분을 말뚝 또는 기둥을 통해서 지지층으로 전달함으로써 기초지반의 전단파괴를 방지하고 또한 침하량을 효율적으로 경감시킬 수 있다. 그러나 말뚝 또는 기둥지지 성토제방의 경우 말뚝(또는 기둥)과 미개량 원지반 사이의 부등침하로 인하여 노면의 요철이 발생하는 문제점이 노출되었다. 이러한 부등침하를 경감시키기 위하여 토목섬유로 보강한 토목섬유보강 말뚝(또는 기둥)지지 성토공법을 적용하고 있다. 본 논문에서는 2차원 유한요소 프로그램인 PLAXIS 2D를 이용하여 시멘트 개량체 기둥으로 지지된 성토제방과 지오그리드를 이용해서 보강한 기둥지지 성토제방의 지반아칭 효과를 비교·분석하였다. 유한요소해석 결과 기둥지지 성토제방의 경우 면적치환비가 증가할수록 응력감소비가 감소하는 것을 알 수 있었다. 지오그리드로 보강한 기둥지지 성토제방의 경우 면적치환비와 지지형식에 따라 부등침하량과 응력감소비의 경감효과가 다소 간의 차이를 보이기는 하나 상대적으로 강성이 큰 지오그리드로 보강하였을 경우 부등침하량과 응력감소비 경감효과가 더 크게 나타났다. 그리고 지오그리드로 보강하면 부등침하를 효율적으로 경감시킬 수 있다는 사실을 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by the Pukyong National University Research Fund in 2017.

References

  1. Alexiew, D. and Gartung, E. (1999), "Geogrid Reinforced Railway Embankment on Piles Performance Monitoring 1994-1998", Proc. of the 1st South American Symposium on Geosynthetics, Brazil, pp.403-411.
  2. Brandl, H., Gartung, E., Verspohl, J., and Alexiew, D. (1997), "Performance of a Geogrid Reinforced Railway Embankment on Piles", Proc. of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 6-12 Sept, Vol.3, pp.1731-1736.
  3. BS 8006 (1995), Code of Practice for Strengthened/Reinforced Soils and other Fills, British Standard Institution, London.
  4. Deltares (2016), Design Guideline Basal Reinforced Piled Embankments, Edited by Suzanne J.M. van Eekelen and Marijn H.A. Brugman, CRC Press, pp.21.
  5. Guido, V. A., Knueppel, J. D. and Sweeny, M. A. (1987), "Plate Loading Tests on Geogrid-Reinforced Earth Slabs", Proc. of Geosynthetic '87 Conference, New Orleans, USA, pp.216-225.
  6. Han, J. and Gabr, M. A. (2002), "Numerical Analysis of Geosynthetic Reinforced and pile-Supported earth Platforms over Soft Soil", Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol.128, No.1, pp.44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
  7. Hewlett, W. J. and Randolph, M. F. (1988), "Analysis of Piled Embankments", Ground Engineering, London England, Vol.21, No.3, pp.12-18.
  8. Hong, W. P and Lee, J. H. (2010), "Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-supported Embamkment System", Journal of Korean Geosynthetics Society, Vol.9, No.3, p.9-18 (in Korean).
  9. Jeong, S. D. (2014), Parametric Evaluation of Geosynthetic Reinforced DCM Column Supported Embankments Based on Finite Element Analysis, Thesis for Master's Degree, Pukyong National University (in Korean).
  10. Kivelo, M. (1998), Stabilization of Embankments on Soft Soil with Lime/Cemnet Columns, Doctoral Thesis, Royal Institute of Technology, Sweden.
  11. Lee, M. W., Heo, Y., and Shin, E. C.(2000), "Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay", Journal of the Korean Society of Civil Engineers, Vol.20, No.5-C, pp. 453-460 (in Korean).
  12. Lee, S. H. (2009), "Numerical Study on the Effects of Geosynthetic Reinforcement on the Pile-Supported Embankment", Journal of the Korean Society for Railway, Vol.12, No.2, pp. 276-284 (in Korean).
  13. Low, B. K., Tang, S. K., and Choa, V. (1994), "Arching in Piled Embankments", Journal of Geotechnical Engineering, ASCE, Vol.120, No.11, pp.1917-1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917)
  14. Rogbeck, Y., Gustavsson, S., Sodergren, I., and Lindquist, D. (1998), "Reinforced Piled Embankments in Sweden - Design Aspects", Proc. of the Sixth International Conference on Geosynthetics, pp.755-762.
  15. Russell, D. and Pierpoint, N. (1997), "An assessment of design methods for piled embankments", Ground Engineering, Vol.30, No.11, pp.39-44.
  16. Shin, E. C., Oh, Y. I., and Lee, D. H. (2005), "Reinforcement Effectiveness and Arching Effect of Geogrid-Reinforced and Pile-Supported Roadway Embankment", Journal of Korean Geosynthetics Society, Vol.4, No.2, p.11-18 (in Korean).
  17. Tam, N. M. (2006), The Behavior of DCM (Deep Cement Mixing) Columns under Highway Embankments by Finite Element Analysis, Ph.D. Thesis, Pukyong National University, Busan, Korea.
  18. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, Inc., New York, pp.66-76
  19. Zanzinger, H. and Gartung, E. (2002), "Performance of a Geogrid Reinforced Railway Embankment on Piles", Geosynthetics: State of the Art, Recent Developments, Proc. of the 7th International Conference on Geosynthetics, Nice, pp.381-386.