• Title/Summary/Keyword: numerical discretization

Search Result 347, Processing Time 0.031 seconds

Development of Advanced Numerical techniques to Reduce Grid Dependency in Industrial CFD Applications

  • Blahowsky Hans Peter
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.19-22
    • /
    • 1998
  • Automatic mesh generation procedures applied to industrial now problems lead to complex mesh topologies where usually no special considerations to mesh resolution are taken. In the present study a fast and flexible solution algorithm in combination with generalized higher order discretization schemes is presented and its application to intake port calculation is demonstrated.

  • PDF

Stability of Time Delay Systems Using Numerical Computation of Argument Principles

  • Suh, Young-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.127-133
    • /
    • 2003
  • This paper proposes a new numerical method to check the stability of a general class of time delay systems. The proposed method checks whether there are characteristic roots whose real values are nonnegative through two steps. Firstly, rectangular bounds of characteristic roots whose real values are nonnegative are computed. Secondly, the existence of roots inside the bounds are checked using the numerical computation of argument principles. An adaptive discretization is proposed for the numerical computation of argument principles.

Modal Analysis of One Dimensional Distributed Parameter Systems by Using the Digital Modeling Technique (디지털 모델링 기법에 의한 1차원 연속계의 모드 해석)

  • 홍성욱;조종환
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.103-112
    • /
    • 1999
  • A new modeling and analysis technique for one-dimensional distributed parameter systems is presented. First. discretized equations of motion in Laplace domain are derived by applying discretization methods for partial differential equations of a one-dimensional structure with respect to spatial coordinate. Secondly. the z and inverse z transformations are applied to the discretized equations of motion for obtaining a dynamic matrix for a uniform element. Four different discretization methods are tested with an example. Finally, taking infinite on the number of step for a uniform element leads to an exact dynamic matrix for the uniform element. A generalized modal analysis procedure for eigenvalue analysis and modal expansion is also presented. The resulting element dynamic matrix is tested with a numerical example. Another application example is provided to demonstrate the applicability of the proposed method.

  • PDF

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows (공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향)

  • Min, Tae-Gee;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

SPLINE DIFFERENCE SCHEME FOR TWO-PARAMETER SINGULARLY PERTURBED PARTIAL DIFFERENTIAL EQUATIONS

  • Zahra, W.K.;El-Azab, M.S.;Mhlawy, Ashraf M. El
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.185-201
    • /
    • 2014
  • In this paper, we construct a numerical method to solve singularly perturbed one-dimensional parabolic convection-diffusion problems. We use Euler method with uniform step size for temporal discretization and exponential-spline scheme on spatial uniform mesh of Shishkin type for full discretization. We show that the resulting method is uniformly convergent with respect to diffusion parameter. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. The obtained numerical results show that the method is efficient, stable and reliable for solving convection-diffusion problem accurately even involving diffusion parameter.

SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES OF VARIATIONAL DISCRETIZATION FOR ELLIPTIC CONTROL PROBLEMS

  • Hua, Yuchun;Tang, Yuelong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.707-719
    • /
    • 2014
  • In this paper, we investigate a variational discretization approximation of elliptic optimal control problems with control constraints. The state and the co-state are approximated by piecewise linear functions, while the control is not directly discretized. By using some proper intermediate variables, we derive a second-order convergence in $L^2$-norm and superconvergence between the numerical solution and elliptic projection of the exact solution in $H^1$-norm or the gradient of the exact solution and recovery gradient in $L^2$-norm. Then we construct a posteriori error estimates by using the superconvergence results and do some numerical experiments to confirm our theoretical results.

NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.123-135
    • /
    • 2015
  • In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.